A platform for research: civil engineering, architecture and urbanism
Production of Biosorbents from Waste Olive Cake and Its Adsorption Characteristics for Zn2+ Ion
In this study, waste olive cake (OC) was utilized as the raw material for the production of biosorbents by chemical treatment and its adsorption capacity for zinc ion was evaluated. Tests were conducted with the total biomass (T) and with the fraction > 2.00 mm (P), in order to determinate the influence of this fractionation step on subsequent treatments. Two chemical agents were used: sulfuric acid and sodium hydroxide. The parameters studied include physical and chemical properties of materials, contact time, pH, adsorbent dose and initial concentrations. The kinetic data were best fitted to the pseudo-second order model. Zinc binding is strongly pH dependent, with more zinc ions bound at a higher pH (5-7 in a range of 3-7). Both Langmuir and Freundlich models are well suited to fit the data on sorption of zinc by OC. Data on sorption of zinc by waste olive cake treated with sulfuric acid (OC-H) was better described by the Freundlich model. Zinc sorption by waste olive cake treated with sodium hydroxide (OC-OH) was better described by the Langmuir model. Results show OC-OH is a biosorbent with a superior adsorption capacity for zinc than OC-H. The maximum adsorption capacity obtained from the Langmuir isotherms increases in the order (mg/g): OC-HT (14), OCT (22) and OC-OHT (27). Results also indicate that the previous fractionation step doesn´t produce a biosorbent with a superior adsorption capacity.
Production of Biosorbents from Waste Olive Cake and Its Adsorption Characteristics for Zn2+ Ion
In this study, waste olive cake (OC) was utilized as the raw material for the production of biosorbents by chemical treatment and its adsorption capacity for zinc ion was evaluated. Tests were conducted with the total biomass (T) and with the fraction > 2.00 mm (P), in order to determinate the influence of this fractionation step on subsequent treatments. Two chemical agents were used: sulfuric acid and sodium hydroxide. The parameters studied include physical and chemical properties of materials, contact time, pH, adsorbent dose and initial concentrations. The kinetic data were best fitted to the pseudo-second order model. Zinc binding is strongly pH dependent, with more zinc ions bound at a higher pH (5-7 in a range of 3-7). Both Langmuir and Freundlich models are well suited to fit the data on sorption of zinc by OC. Data on sorption of zinc by waste olive cake treated with sulfuric acid (OC-H) was better described by the Freundlich model. Zinc sorption by waste olive cake treated with sodium hydroxide (OC-OH) was better described by the Langmuir model. Results show OC-OH is a biosorbent with a superior adsorption capacity for zinc than OC-H. The maximum adsorption capacity obtained from the Langmuir isotherms increases in the order (mg/g): OC-HT (14), OCT (22) and OC-OHT (27). Results also indicate that the previous fractionation step doesn´t produce a biosorbent with a superior adsorption capacity.
Production of Biosorbents from Waste Olive Cake and Its Adsorption Characteristics for Zn2+ Ion
Benilde Mendes (author) / Filomena Pinto (author) / Sofia Monteiro (author) / Ana Fernando (author)
2009
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Development of new composite biosorbents from olive pomace wastes
British Library Online Contents | 2010
|Elimination of Chromium(VI) from Waste Water Using Various Biosorbents
Springer Verlag | 2018
|Adsorption of heavy metals from wastewater using agricultural–industrial wastes as biosorbents
Taylor & Francis Verlag | 2017
|A method of processing waste gases from the drying of olive press-cake
Elsevier | 1987
|