A platform for research: civil engineering, architecture and urbanism
Contextual Route Recommendation System in Heterogeneous Traffic Flow
The traffic composition in developing countries comprises of variety of vehicles which include cars, buses, trucks, and motorcycles. Motorcycles dominate the road with 77.5% compared to other types. Meanwhile, route recommendation such as navigation and Advanced Driver Assistance Systems (ADAS) is limited to particular vehicles only. In this research, we propose a framework for a contextual route recommendation system that is compatible with traffic conditions and vehicle type, along with other relevant attributes (traffic prediction, weather, temperature, humidity, heterogeneity, current speed, and road length). The framework consists of two phases. First, it predicts the traffic conditions by using Knowledge-Growing Bayes Classifier on which the dataset is obtained from crawling the public CCTV feeds and TomTom digital map application for each observed road. The performances of the traffic prediction are around 60.78–73.69%, 63.64–77.39%, and 60.78–73.69%, for accuracy, precision, and recall respectively. Second, to accommodate the route recommendation, we simulate and utilize a new measure, called road capacity value, along with the Dijkstra algorithm. By adopting the compatibility, the simulation results could show alternative paths with the lowest RCV (road capacity value).
Contextual Route Recommendation System in Heterogeneous Traffic Flow
The traffic composition in developing countries comprises of variety of vehicles which include cars, buses, trucks, and motorcycles. Motorcycles dominate the road with 77.5% compared to other types. Meanwhile, route recommendation such as navigation and Advanced Driver Assistance Systems (ADAS) is limited to particular vehicles only. In this research, we propose a framework for a contextual route recommendation system that is compatible with traffic conditions and vehicle type, along with other relevant attributes (traffic prediction, weather, temperature, humidity, heterogeneity, current speed, and road length). The framework consists of two phases. First, it predicts the traffic conditions by using Knowledge-Growing Bayes Classifier on which the dataset is obtained from crawling the public CCTV feeds and TomTom digital map application for each observed road. The performances of the traffic prediction are around 60.78–73.69%, 63.64–77.39%, and 60.78–73.69%, for accuracy, precision, and recall respectively. Second, to accommodate the route recommendation, we simulate and utilize a new measure, called road capacity value, along with the Dijkstra algorithm. By adopting the compatibility, the simulation results could show alternative paths with the lowest RCV (road capacity value).
Contextual Route Recommendation System in Heterogeneous Traffic Flow
Surya Michrandi Nasution (author) / Emir Husni (author) / Kuspriyanto Kuspriyanto (author) / Rahadian Yusuf (author) / Bernardo Nugroho Yahya (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Modeling Heterogeneous Traffic Flow
British Library Online Contents | 1999
|Research on Customized Indoor Route Recommendation
British Library Conference Proceedings | 2014
|Methodology for Modeling Highly Heterogeneous Traffic Flow
Online Contents | 2005
|