A platform for research: civil engineering, architecture and urbanism
Functional Diversity of Plant Communities in Relationship to Leaf and Soil Stoichiometry in Karst Areas of Southwest China
Assessment of relationships between functional diversity and ecological stoichiometry in plant communities can aid in determining the relative variability and ecological complementarity of functional attributes among species, which is a better approach to understanding ecosystem processes and functions than studying species taxonomic diversity. Here, we analyzed the relationships among community weighted means of functional traits, functional diversity, and leaf and soil chemical properties of plant communities during various stages of vegetation restoration in Mao Lan National Karst Forest Nature Reserve, located in humid subtropical Guizhou of China. Our results showed significant changes in four weighted functional traits of plant communities at different restoration stages, namely, plant height, leaf width to leaf length ratio, and leaf area. Additionally, with the progression of the recovery of plant communities, functional richness, functional separation, and quadratic entropy, the coefficient tended to increase. Functional divergence tended to gradually decrease. The association of functional diversity with soil chemical properties was stronger than that with leaf ecological stoichiometry. Regarding leaf and soil chemical properties, soil phosphorus content and leaf C:P were particularly important in influencing functional diversity. Our overall findings indicate that functional traits shift from “acquisitive” to “conservative” as the community is restored. Karst plant communities reduce interspecific resource competition as restoration proceeds, thereby increasing functional overlap effects.
Functional Diversity of Plant Communities in Relationship to Leaf and Soil Stoichiometry in Karst Areas of Southwest China
Assessment of relationships between functional diversity and ecological stoichiometry in plant communities can aid in determining the relative variability and ecological complementarity of functional attributes among species, which is a better approach to understanding ecosystem processes and functions than studying species taxonomic diversity. Here, we analyzed the relationships among community weighted means of functional traits, functional diversity, and leaf and soil chemical properties of plant communities during various stages of vegetation restoration in Mao Lan National Karst Forest Nature Reserve, located in humid subtropical Guizhou of China. Our results showed significant changes in four weighted functional traits of plant communities at different restoration stages, namely, plant height, leaf width to leaf length ratio, and leaf area. Additionally, with the progression of the recovery of plant communities, functional richness, functional separation, and quadratic entropy, the coefficient tended to increase. Functional divergence tended to gradually decrease. The association of functional diversity with soil chemical properties was stronger than that with leaf ecological stoichiometry. Regarding leaf and soil chemical properties, soil phosphorus content and leaf C:P were particularly important in influencing functional diversity. Our overall findings indicate that functional traits shift from “acquisitive” to “conservative” as the community is restored. Karst plant communities reduce interspecific resource competition as restoration proceeds, thereby increasing functional overlap effects.
Functional Diversity of Plant Communities in Relationship to Leaf and Soil Stoichiometry in Karst Areas of Southwest China
Yang Wang (author) / Limin Zhang (author) / Jin Chen (author) / Ling Feng (author) / Fangbing Li (author) / Lifei Yu (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Plant Functional Trait Responses to Dolomite and Limestone Karst Forests in Southwest China
DOAJ | 2022
|DOAJ | 2024
|