A platform for research: civil engineering, architecture and urbanism
Environmental Controls of Diurnal and Seasonal Variations in the Stem Radius of Platycladus orientalis in Northern China
Fine-resolution studies of stem radial variation over short timescales throughout the year can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Using data from high-resolution point dendrometers collected from Platycladus orientalis (Linn.) trees between September 2013 and December 2014, this study investigated the daily and seasonal patterns of stem radial variation in addition to the relationships between daily stem radial variation and environmental factors over the growing season. Two contrasting daily cycle patterns were observed for warm and cold seasons. A daily mean air temperature of 0 °C was a critical threshold that was related to seasonal shifts in stem diurnal cycle patterns, indicating that air temperature critically influences diurnal stem cycles. The annual variation in P. orientalis stem radius variation can be divided into four distinct periods including (1) spring rehydration, (2) the summer growing season, (3) autumn stagnation, and (4) winter contraction. These periods reflect seasonal changes in tree water status that are especially pronounced in spring and winter. During the growing season, the maximum daily shrinkage (MDS) of P. orientalis was positively correlated with air temperature (Ta) and negatively correlated with soil water content (SWC) and precipitation (P). The vapor pressure deficit (VPD) also exhibited a threshold-based control on MDS at values below or above 0.8 kPa. Daily radial changes (DRC) were negatively correlated with Ta and VPD but positively correlated with relative air humidity (RH) and P. These results suggest that the above environmental factors are associated with tree water status via their influence on moisture availability to trees, which in turn affects the metrics of daily stem variation including MDS and DRC.
Environmental Controls of Diurnal and Seasonal Variations in the Stem Radius of Platycladus orientalis in Northern China
Fine-resolution studies of stem radial variation over short timescales throughout the year can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Using data from high-resolution point dendrometers collected from Platycladus orientalis (Linn.) trees between September 2013 and December 2014, this study investigated the daily and seasonal patterns of stem radial variation in addition to the relationships between daily stem radial variation and environmental factors over the growing season. Two contrasting daily cycle patterns were observed for warm and cold seasons. A daily mean air temperature of 0 °C was a critical threshold that was related to seasonal shifts in stem diurnal cycle patterns, indicating that air temperature critically influences diurnal stem cycles. The annual variation in P. orientalis stem radius variation can be divided into four distinct periods including (1) spring rehydration, (2) the summer growing season, (3) autumn stagnation, and (4) winter contraction. These periods reflect seasonal changes in tree water status that are especially pronounced in spring and winter. During the growing season, the maximum daily shrinkage (MDS) of P. orientalis was positively correlated with air temperature (Ta) and negatively correlated with soil water content (SWC) and precipitation (P). The vapor pressure deficit (VPD) also exhibited a threshold-based control on MDS at values below or above 0.8 kPa. Daily radial changes (DRC) were negatively correlated with Ta and VPD but positively correlated with relative air humidity (RH) and P. These results suggest that the above environmental factors are associated with tree water status via their influence on moisture availability to trees, which in turn affects the metrics of daily stem variation including MDS and DRC.
Environmental Controls of Diurnal and Seasonal Variations in the Stem Radius of Platycladus orientalis in Northern China
Manyu Dong (author) / Bingqin Wang (author) / Yuan Jiang (author) / Xinyuan Ding (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Water retention device for platycladus orientalis planting
European Patent Office | 2024
|European Patent Office | 2015
|Elevation Shapes Soil Microbial Diversity and Carbon Cycling in Platycladus orientalis Plantations
DOAJ | 2024
|