A platform for research: civil engineering, architecture and urbanism
Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review
Lignocellulosic feedstocks are year-round, available bio-residues that are the right candidates for counteracting the energy crises and global warming facing the world today. However, lignin leads to a slow hydrolysis rate and is a major bottleneck for biogas production via anaerobic digestion. Anaerobic co-digestion (AcoD) is an economical method available, which overcomes the limitation of a single feedstock’s properties in an anaerobic digestion process. This paper critically reviews the impacts of co-digestion on lignocellulosic biomass degradation, process stability, various working parameters, and microbial activities that improve methane yields. A combination of compatible substrates is chosen to improve the biomethane yield and conversion rate of organic matter. AcoD is a promising method in the delignification of lignocellulosic biomass as an acid pretreatment. Ultimate practices to control the impact of co-digestion on system performances include co-feed selection, in terms of both carbon-to-nitrogen (C/N) and mixing ratios, and other operating conditions. A detailed analysis is performed using data reported in the recent past to assess the sensitivity of influencing parameters on the resultant biogas yield. For the investigators motivated by the basic principles of AcoD technology, this review paper generates baseline data for further research work around co-digestion.
Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review
Lignocellulosic feedstocks are year-round, available bio-residues that are the right candidates for counteracting the energy crises and global warming facing the world today. However, lignin leads to a slow hydrolysis rate and is a major bottleneck for biogas production via anaerobic digestion. Anaerobic co-digestion (AcoD) is an economical method available, which overcomes the limitation of a single feedstock’s properties in an anaerobic digestion process. This paper critically reviews the impacts of co-digestion on lignocellulosic biomass degradation, process stability, various working parameters, and microbial activities that improve methane yields. A combination of compatible substrates is chosen to improve the biomethane yield and conversion rate of organic matter. AcoD is a promising method in the delignification of lignocellulosic biomass as an acid pretreatment. Ultimate practices to control the impact of co-digestion on system performances include co-feed selection, in terms of both carbon-to-nitrogen (C/N) and mixing ratios, and other operating conditions. A detailed analysis is performed using data reported in the recent past to assess the sensitivity of influencing parameters on the resultant biogas yield. For the investigators motivated by the basic principles of AcoD technology, this review paper generates baseline data for further research work around co-digestion.
Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review
Mohammed Kelif Ibro (author) / Venkata Ramayya Ancha (author) / Dejene Beyene Lemma (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Factors influencing solid-state anaerobic digestion
Elsevier | 1988
|Wiley | 2019
|Critical Review on the Parameters Influencing Soil-Water Characteristic Curve
British Library Online Contents | 2012
|British Library Conference Proceedings | 1997