A platform for research: civil engineering, architecture and urbanism
Resilience-Based Recovery Assessments of Networked Infrastructure Systems under Localized Attacks
To reduce unforeseen disaster risks, infrastructure systems are expected to be resilient. The impact of many natural disasters on networked infrastructures is often observed to follow a localized attack pattern. The localized attack can be demonstrated by the failures of a group of links concentrated in a particular geographical domain which result in adjacent isolated nodes. In this paper, a resilience-based recovery assessment framework is proposed. The framework aims to find the most effective recovery strategy when subjected to localized attacks. The proposed framework was implemented in a lattice network structure inspired by a water distribution network case study. Three different recovery strategies were studied with cost and time constraints incorporated: preferential recovery based on nodal weight (PRNW), periphery recovery (PR), and localized recovery (LR). The case study results indicated that LR could be selected as the most resilient and cost-effective recovery strategy. This paper hopes to aid in the decision-making process by providing a strategic baseline for finding an optimized recovery strategy for localized attack scenarios.
Resilience-Based Recovery Assessments of Networked Infrastructure Systems under Localized Attacks
To reduce unforeseen disaster risks, infrastructure systems are expected to be resilient. The impact of many natural disasters on networked infrastructures is often observed to follow a localized attack pattern. The localized attack can be demonstrated by the failures of a group of links concentrated in a particular geographical domain which result in adjacent isolated nodes. In this paper, a resilience-based recovery assessment framework is proposed. The framework aims to find the most effective recovery strategy when subjected to localized attacks. The proposed framework was implemented in a lattice network structure inspired by a water distribution network case study. Three different recovery strategies were studied with cost and time constraints incorporated: preferential recovery based on nodal weight (PRNW), periphery recovery (PR), and localized recovery (LR). The case study results indicated that LR could be selected as the most resilient and cost-effective recovery strategy. This paper hopes to aid in the decision-making process by providing a strategic baseline for finding an optimized recovery strategy for localized attack scenarios.
Resilience-Based Recovery Assessments of Networked Infrastructure Systems under Localized Attacks
Tanzina Afrin (author) / Nita Yodo (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Infrastructure Recovery for Resilience Quantification
ASCE | 2017
|Infrastructure Recovery for Resilience Quantification
British Library Conference Proceedings | 2017
|