A platform for research: civil engineering, architecture and urbanism
Role of Environment Variables in Spatial Distribution of Soil C, N, P Ecological Stoichiometry in the Typical Black Soil Region of Northeast China
The effects of environmental factors on topsoil nutrient distribution have been extensively discussed, but it remains unclear how they affect spatial characteristics of soil carbon (C), nitrogen (N), and phosphorus (P) stoichiometry at different depths. We collected 184 soil samples in the typical black soil region of northeast China. Ordinary kriging was performed to describe the spatial distribution of soil C, N, and P eco-stoichiometry. Redundancy analysis was used to explore relationships between C:N:P ratios and physicochemical characteristics. The soil classification was studied by hierarchical cluster analysis. The mean C, N, and P contents ranged from 15.67 to 20.08 g·kg−1, 1.15 to 1.51 g·kg−1, and 0.80 to 0.90 g·kg−1 within measured depths. C, N, and P concentrations and stoichiometry increased from southwest to northeast, and the Songhua River was identified as an important transition zone. At 0–20 cm, soil water content explained most of the C, N, and P content levels and ratios in cluster 1, while latitude had the highest explanatory ability in cluster 2. For 20–40 cm, soil bulk density was the main influencing factor in both clusters. Our findings contribute to an improved knowledge of the balance and ecological interactions of C, N, and P in northeast China for its sustainability.
Role of Environment Variables in Spatial Distribution of Soil C, N, P Ecological Stoichiometry in the Typical Black Soil Region of Northeast China
The effects of environmental factors on topsoil nutrient distribution have been extensively discussed, but it remains unclear how they affect spatial characteristics of soil carbon (C), nitrogen (N), and phosphorus (P) stoichiometry at different depths. We collected 184 soil samples in the typical black soil region of northeast China. Ordinary kriging was performed to describe the spatial distribution of soil C, N, and P eco-stoichiometry. Redundancy analysis was used to explore relationships between C:N:P ratios and physicochemical characteristics. The soil classification was studied by hierarchical cluster analysis. The mean C, N, and P contents ranged from 15.67 to 20.08 g·kg−1, 1.15 to 1.51 g·kg−1, and 0.80 to 0.90 g·kg−1 within measured depths. C, N, and P concentrations and stoichiometry increased from southwest to northeast, and the Songhua River was identified as an important transition zone. At 0–20 cm, soil water content explained most of the C, N, and P content levels and ratios in cluster 1, while latitude had the highest explanatory ability in cluster 2. For 20–40 cm, soil bulk density was the main influencing factor in both clusters. Our findings contribute to an improved knowledge of the balance and ecological interactions of C, N, and P in northeast China for its sustainability.
Role of Environment Variables in Spatial Distribution of Soil C, N, P Ecological Stoichiometry in the Typical Black Soil Region of Northeast China
Qianqian Chen (author) / Zhou Shi (author) / Songchao Chen (author) / Yuxuan Gou (author) / Zhiqing Zhuo (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2022
|