A platform for research: civil engineering, architecture and urbanism
An Improved Method Constructing 3D River Channel for Flood Modeling
The high-resolution topography is very crucial to investigate the hydrological and hydrodynamic process. To resolve the deficiency problem of high resolution terrain data in rivers, the Quartic Hermite Spline with Parameter (QHSP) method constructing the river channel terrain based on the limited cross-section data is presented. The proposed method is able to not only improve the reliability of the constructed river terrain, but also avoid the numerical oscillations caused by the existing constructing approach, e.g., the Cubic Hermite Spline (CHS) method. The performance of the proposed QHSP method is validated against two benchmark tests. Comparing the constructed river terrains, the QHSP method can improve the accuracy by at least 15%. For the simulated flood process, the QHSP method could reproduce more acceptable modeling results as well, e.g., in Wangmaogou catchment, the numerical model applying the Digital Elevation Model (DEM) produced by the QHSP method could increase the reliability by 18.5% higher than that of CHS method. It is indicated that the QHSP method is more reliable for river terrain model construction than the CHS and is a more reasonable tool investigating the hydrodynamic processes in river channels lacking of high resolution topography data.
An Improved Method Constructing 3D River Channel for Flood Modeling
The high-resolution topography is very crucial to investigate the hydrological and hydrodynamic process. To resolve the deficiency problem of high resolution terrain data in rivers, the Quartic Hermite Spline with Parameter (QHSP) method constructing the river channel terrain based on the limited cross-section data is presented. The proposed method is able to not only improve the reliability of the constructed river terrain, but also avoid the numerical oscillations caused by the existing constructing approach, e.g., the Cubic Hermite Spline (CHS) method. The performance of the proposed QHSP method is validated against two benchmark tests. Comparing the constructed river terrains, the QHSP method can improve the accuracy by at least 15%. For the simulated flood process, the QHSP method could reproduce more acceptable modeling results as well, e.g., in Wangmaogou catchment, the numerical model applying the Digital Elevation Model (DEM) produced by the QHSP method could increase the reliability by 18.5% higher than that of CHS method. It is indicated that the QHSP method is more reliable for river terrain model construction than the CHS and is a more reasonable tool investigating the hydrodynamic processes in river channels lacking of high resolution topography data.
An Improved Method Constructing 3D River Channel for Flood Modeling
Pengbo Hu (author) / Jingming Hou (author) / Zaixing Zhi (author) / Bingyao Li (author) / Kaihua Guo (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Constructing flood control channel
Engineering Index Backfile | 1943
|European Patent Office | 2023
|METHOD FOR CONSTRUCTING BEAM CHANNEL BENEATH A FLOOD PROTECTION PLATE
European Patent Office | 2024
|River channel flood prevention device for river channel repair and protection engineering
European Patent Office | 2023
|