A platform for research: civil engineering, architecture and urbanism
Artificial Neural Network Model for Prediction of Bearing Capacity of Driven Pile
Abstract. This paper presents the development of ANN model for prediction of axial capacity of a driven pile based on Pile Driving Analyzer (PDA) test data. As many as 300 sets of high quality test data from dynamic load test performed at several construction projects in Indonesia and Malaysia were selected for this study.Input considered in the modeling are pile characteristics (diameter, length as well as compression and tension capacity), pile set, and hammer characteristics (ram weight, drop height, and energy transferred).An ANN model (named: ANN-HM) was developed in this study using a computerized intelligent system for predicting the total pile capacity as well as shaft resistance and end bearing capacity for various pile and hammer characteristics. The results show that the ANN-HM serves as a reliable prediction tool to predict the resistance of the driven pile with coefficient of correlation (R) values close to 0.9 and mean squared error (MSE) less than 1% after 15,000 number of iteration process. Abstrak. Makalah ini menyajikan pengembangan model ANN untuk prediksi kapasitas daya dukung axial tiang pancang berdasarkan data uji Pile Driving Analyzer (PDA). Sebanyak 300 set data uji dari uji beban dinamis yang dilakukan pada beberapa proyek konstruksi di Indonesia dan Malaysia dipilih untuk penelitian ini. Variabel bebas yang digunakan adalah karakteristik tiang pancang (diameter, panjang serta kapasitas tekan dan tarik), set, dan karakteristik palu penumbuk tiang (berat palu, tinggi jatuh dan energi yang ditransfer). Model ANN (yang dinamakan: ANN-HM) dikembangkan dalam penelitian ini menggunakan intelligent system dalam ANN untuk memprediksi daya dukung tiang total yang didistribusikan kepada tahanan ujung dan tahanan sisi untuk berbagai jenis tiang dan palu penumbuk tiang. Hasil penelitian menunjukkan bahwa ANN-HM dapat diandalkan untuk memprediksi daya dukung tiang pancang dengan koefisien korelasi (R) mendekati 0,9 dan rata-rata kesalahan kuadrat (MSE) kurang dari 1 % setelah 15.000 kali proses iterasi.
Artificial Neural Network Model for Prediction of Bearing Capacity of Driven Pile
Abstract. This paper presents the development of ANN model for prediction of axial capacity of a driven pile based on Pile Driving Analyzer (PDA) test data. As many as 300 sets of high quality test data from dynamic load test performed at several construction projects in Indonesia and Malaysia were selected for this study.Input considered in the modeling are pile characteristics (diameter, length as well as compression and tension capacity), pile set, and hammer characteristics (ram weight, drop height, and energy transferred).An ANN model (named: ANN-HM) was developed in this study using a computerized intelligent system for predicting the total pile capacity as well as shaft resistance and end bearing capacity for various pile and hammer characteristics. The results show that the ANN-HM serves as a reliable prediction tool to predict the resistance of the driven pile with coefficient of correlation (R) values close to 0.9 and mean squared error (MSE) less than 1% after 15,000 number of iteration process. Abstrak. Makalah ini menyajikan pengembangan model ANN untuk prediksi kapasitas daya dukung axial tiang pancang berdasarkan data uji Pile Driving Analyzer (PDA). Sebanyak 300 set data uji dari uji beban dinamis yang dilakukan pada beberapa proyek konstruksi di Indonesia dan Malaysia dipilih untuk penelitian ini. Variabel bebas yang digunakan adalah karakteristik tiang pancang (diameter, panjang serta kapasitas tekan dan tarik), set, dan karakteristik palu penumbuk tiang (berat palu, tinggi jatuh dan energi yang ditransfer). Model ANN (yang dinamakan: ANN-HM) dikembangkan dalam penelitian ini menggunakan intelligent system dalam ANN untuk memprediksi daya dukung tiang total yang didistribusikan kepada tahanan ujung dan tahanan sisi untuk berbagai jenis tiang dan palu penumbuk tiang. Hasil penelitian menunjukkan bahwa ANN-HM dapat diandalkan untuk memprediksi daya dukung tiang pancang dengan koefisien korelasi (R) mendekati 0,9 dan rata-rata kesalahan kuadrat (MSE) kurang dari 1 % setelah 15.000 kali proses iterasi.
Artificial Neural Network Model for Prediction of Bearing Capacity of Driven Pile
Harnedi Maizir (author) / Nurly Gofar (author) / Khairul Anuar Kassim (author)
2015
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Artificial Neural Network Model for Prediction of Bearing Capacity of Driven Pile
DOAJ | 2015
|Prediction of Pile Bearing Capacity Using Artificial Neural Networks
Online Contents | 1996
|Prediction of ultimate pile bearing capacity using artificial neural networks
British Library Conference Proceedings | 2006
|Trans Tech Publications | 2010
|