A platform for research: civil engineering, architecture and urbanism
Future Drought and Flood Vulnerability and Risk Prediction of China’s Agroecosystem under Climate Change
Droughts and floods cause serious damage to agricultural production and ecosystems, and system-based vulnerability and risk prediction are the main tools used to address droughts and floods. This paper takes the agroecosystem as the research object, uses the vulnerability model based on “sensitivity–exposure–adaptability” and “vulnerability-risk, source-risk receptor” drought and flood risk models, and establishes multi-index prediction systems covering climate change, population, agricultural technology, economy, ecology, and other factors. Using a combination of AHP and the entropy weighting method, we predict the vulnerability and risk of droughts and floods in China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from 2020 to 2050. The results show that as the scenario changes from SSP1-2.6 to SSP5-8.5 in turn, drought and flood vulnerability intensify, and the drought or flood vulnerability area expands to southern China. At the same time, future drought and flood risk patterns present the characteristics of high risk in Northeast, North, Central, and Southwest China. Therefore, major grain-producing provinces such as Heilongjiang and Henan need to do a good job of preventing and responding to agroecosystem drought and flood risks by strengthening regional structural and nonstructural measures.
Future Drought and Flood Vulnerability and Risk Prediction of China’s Agroecosystem under Climate Change
Droughts and floods cause serious damage to agricultural production and ecosystems, and system-based vulnerability and risk prediction are the main tools used to address droughts and floods. This paper takes the agroecosystem as the research object, uses the vulnerability model based on “sensitivity–exposure–adaptability” and “vulnerability-risk, source-risk receptor” drought and flood risk models, and establishes multi-index prediction systems covering climate change, population, agricultural technology, economy, ecology, and other factors. Using a combination of AHP and the entropy weighting method, we predict the vulnerability and risk of droughts and floods in China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from 2020 to 2050. The results show that as the scenario changes from SSP1-2.6 to SSP5-8.5 in turn, drought and flood vulnerability intensify, and the drought or flood vulnerability area expands to southern China. At the same time, future drought and flood risk patterns present the characteristics of high risk in Northeast, North, Central, and Southwest China. Therefore, major grain-producing provinces such as Heilongjiang and Henan need to do a good job of preventing and responding to agroecosystem drought and flood risks by strengthening regional structural and nonstructural measures.
Future Drought and Flood Vulnerability and Risk Prediction of China’s Agroecosystem under Climate Change
Jiangnan Li (author) / Jieming Chou (author) / Weixing Zhao (author) / Yuan Xu (author) / Yidan Hao (author) / Yuanmeng Li (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Flood Vulnerability to Climate Change through Hydrological Modeling
Taylor & Francis Verlag | 2005
|Online Contents | 2014
|Changes to Bridge Flood Risk under Climate Change
ASCE | 2016
|