A platform for research: civil engineering, architecture and urbanism
Effects of the Tip Location on Single Piles Subjected to Surcharge and Axial Loads
When applying axial load on piles subjected to negative skin friction (NSF), the yielded NSF is gradually eliminated. The process is notably influenced by the tip location (Y) and still a lack of understanding. This paper reports three-dimensional numerical simulations with tip locations Y=1.00 pile diameter (D), 0.25D, 0.00D, and -1.00D. It is found that, against expectations, the dragload and NSF are not proportionally related to the tip location. When maximum dragload (Pmax) is eventually eliminated due to an axial load, there is also a negative crest of the skin friction, indicating that NSF still exists based on the criterion of the dragload reduction. The side resistance of the piles with Y=1.00D and 0.25D is almost fully mobilised, which is demonstrated by the increment of end resistance that greatly increases with the larger axial loads. However, the side resistance of the piles with Y=0.00D and -1.00D has a potential capacity to carry more loads with continued displacement since the increment of end resistance increases almost linearly with axial load. Therefore, when designing the pile foundation, the inclusion of the NSF should be governed by the amount of axial load to be resisted.
Effects of the Tip Location on Single Piles Subjected to Surcharge and Axial Loads
When applying axial load on piles subjected to negative skin friction (NSF), the yielded NSF is gradually eliminated. The process is notably influenced by the tip location (Y) and still a lack of understanding. This paper reports three-dimensional numerical simulations with tip locations Y=1.00 pile diameter (D), 0.25D, 0.00D, and -1.00D. It is found that, against expectations, the dragload and NSF are not proportionally related to the tip location. When maximum dragload (Pmax) is eventually eliminated due to an axial load, there is also a negative crest of the skin friction, indicating that NSF still exists based on the criterion of the dragload reduction. The side resistance of the piles with Y=1.00D and 0.25D is almost fully mobilised, which is demonstrated by the increment of end resistance that greatly increases with the larger axial loads. However, the side resistance of the piles with Y=0.00D and -1.00D has a potential capacity to carry more loads with continued displacement since the increment of end resistance increases almost linearly with axial load. Therefore, when designing the pile foundation, the inclusion of the NSF should be governed by the amount of axial load to be resisted.
Effects of the Tip Location on Single Piles Subjected to Surcharge and Axial Loads
Yaru Lv (author) / Xuanming Ding (author) / Dubo Wang (author)
2013
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Neutral plane of single piles in clay subjected to surcharge loading
British Library Conference Proceedings | 1998
|NUMERICAL SIMULATION OF DEFECTIVE PILES SUBJECTED TO AXIAL LOADS
British Library Conference Proceedings | 2007
|British Library Conference Proceedings | 2014
|