A platform for research: civil engineering, architecture and urbanism
Permeability Characteristics of Compacted and Stabilized Clay with Cement, Peat Ash and Silica Sand
The present paper investigates the influence of stabilization with cement, peat ash, and silica sand on permeability coefficient (kv) of compacted clay, using a novel approach to stabilize the clay with peat ash as a supplementary material of cement in the compacted and stabilized soil. In order to assess the mentioned influence, test specimens of both untreated and stabilized soil have been tested in the laboratory so that their permeability could be evaluated. Falling head and one dimensional consolidation tests of laboratory permeability were performed on the clay specimens and the chemical compositions of the materials as well as microstructure of the stabilized soil with 18% cement, 2% peat ash, and 5% silica sand were investigated, using X-ray fluorescence and scanning electron microscopy respectively. Results show that for soil stabilization with up to 8% cement content (of the dry weight of the soil), the average value of coefficient of permeability (kv) is very close to that of untreated soil, whereas the kv value decreases drastically for 18% cement under identical void ratio conditions. It is further revealed that addition of 18% cement, 2% peat ash, and 5% silica sand had decreased the coefficient of permeability by almost 2.2 folds after 24 h, while about 1.7 folds increase was observed in coefficient of permeability once 13.5% of cement, 1.5% of peat ash, and 20% of silica sand were added. The partial replacement of cement with the 2% peat ash can reduce the consumption of cement for soil stabilization.
Permeability Characteristics of Compacted and Stabilized Clay with Cement, Peat Ash and Silica Sand
The present paper investigates the influence of stabilization with cement, peat ash, and silica sand on permeability coefficient (kv) of compacted clay, using a novel approach to stabilize the clay with peat ash as a supplementary material of cement in the compacted and stabilized soil. In order to assess the mentioned influence, test specimens of both untreated and stabilized soil have been tested in the laboratory so that their permeability could be evaluated. Falling head and one dimensional consolidation tests of laboratory permeability were performed on the clay specimens and the chemical compositions of the materials as well as microstructure of the stabilized soil with 18% cement, 2% peat ash, and 5% silica sand were investigated, using X-ray fluorescence and scanning electron microscopy respectively. Results show that for soil stabilization with up to 8% cement content (of the dry weight of the soil), the average value of coefficient of permeability (kv) is very close to that of untreated soil, whereas the kv value decreases drastically for 18% cement under identical void ratio conditions. It is further revealed that addition of 18% cement, 2% peat ash, and 5% silica sand had decreased the coefficient of permeability by almost 2.2 folds after 24 h, while about 1.7 folds increase was observed in coefficient of permeability once 13.5% of cement, 1.5% of peat ash, and 20% of silica sand were added. The partial replacement of cement with the 2% peat ash can reduce the consumption of cement for soil stabilization.
Permeability Characteristics of Compacted and Stabilized Clay with Cement, Peat Ash and Silica Sand
Seyed Esmaeil Mousavi (author) / Leong Sing Wong (author)
2016
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Stabilization of compacted clay with cement and/or lime containing peat ash
Taylor & Francis Verlag | 2017
|Permeability of compacted clay
Engineering Index Backfile | 1965
|Unconfined Compressive Strength of Compacted Disturbed Cement-Stabilized Soft Clay
Springer Verlag | 2016
|Permeability of compacted granule–clay mixtures
British Library Online Contents | 2008
|Permeability of compacted granule–clay mixtures
Online Contents | 2008
|