A platform for research: civil engineering, architecture and urbanism
Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar
This study investigates the pyrolysis behavior and reaction kinetics of two different types of solid digestates from: (i) sewage sludge and (ii) a mixture of sewage sludge and lignocellulosic biomass—Typha latifolia plant. Thermogravimetric data in the temperature range 25–800 °C were analyzed using Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose kinetic methods, and the thermodynamic parameters (, , and ) were also determined. Biochars were characterized using different chemical methods (FTIR, SEM–EDS, XRD, heavy metal, and nutrient analysis) and tested as soil enhancers using a germination test. Finally, their potential for biosorption of NH4+, PO43−, Cu2+, and Cd2+ ions was studied. Kinetic and thermodynamic parameters revealed a complex degradation mechanism of digestates, as they showed higher activation energies than undigested materials. Values for sewage sludge digestate were between 57 and 351 kJ/mol, and for digestate composed of sewage sludge and T. latifolia between 62 and 401 kJ/mol. Characterizations of biochars revealed high nutrient content and promising potential for further use. The advantage of biochar obtained from a digestate mixture of sewage sludge and lignocellulosic biomass is the lower content of heavy metals. Biosorption tests showed low biosorption capacity of digestate-derived biochars and their modifications for NH4+ and PO43− ions, but high biosorption capacity for Cu2+ and Cd2+ ions. Modification with KOH was more efficient than modification with HCl. The digestate-derived biochars exhibited excellent performance in germination tests, especially at concentrations between 6 and 10 wt.%.
Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar
This study investigates the pyrolysis behavior and reaction kinetics of two different types of solid digestates from: (i) sewage sludge and (ii) a mixture of sewage sludge and lignocellulosic biomass—Typha latifolia plant. Thermogravimetric data in the temperature range 25–800 °C were analyzed using Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose kinetic methods, and the thermodynamic parameters (, , and ) were also determined. Biochars were characterized using different chemical methods (FTIR, SEM–EDS, XRD, heavy metal, and nutrient analysis) and tested as soil enhancers using a germination test. Finally, their potential for biosorption of NH4+, PO43−, Cu2+, and Cd2+ ions was studied. Kinetic and thermodynamic parameters revealed a complex degradation mechanism of digestates, as they showed higher activation energies than undigested materials. Values for sewage sludge digestate were between 57 and 351 kJ/mol, and for digestate composed of sewage sludge and T. latifolia between 62 and 401 kJ/mol. Characterizations of biochars revealed high nutrient content and promising potential for further use. The advantage of biochar obtained from a digestate mixture of sewage sludge and lignocellulosic biomass is the lower content of heavy metals. Biosorption tests showed low biosorption capacity of digestate-derived biochars and their modifications for NH4+ and PO43− ions, but high biosorption capacity for Cu2+ and Cd2+ ions. Modification with KOH was more efficient than modification with HCl. The digestate-derived biochars exhibited excellent performance in germination tests, especially at concentrations between 6 and 10 wt.%.
Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar
Aleksandra Petrovič (author) / Sabina Vohl (author) / Tjaša Cenčič Predikaka (author) / Robert Bedoić (author) / Marjana Simonič (author) / Irena Ban (author) / Lidija Čuček (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2015
|Pyrolysis Characteristics and Kinetic Study of Urban Sewage Water and Sludge
British Library Online Contents | 2010
|Application of Bio-Char from Sewage Sludge Pyrolysis
British Library Conference Proceedings | 2015
|