A platform for research: civil engineering, architecture and urbanism
Drainage Ratio Controls Phytoplankton Abundance in Urban Lakes
Urban lakes located in densely populated regions are highly vulnerable freshwater ecosystems compared to lakes in rural areas due to intense anthropogenic activities. However, the impacts of intrinsic lake morphometry on the water quality of urban lakes remain unclear. In the present study, the water quality of 14 lakes and the underlying factors associated with such quality were explored in Wuhan City, China. Of these surveyed urban lakes, 92.9% were eutrophic or hypereutrophic; phytoplankton biomass ranged between 3.2 and 62.0 mg/L and was positively correlated with drainage ratio values (catchment area/lake area) during the phytoplankton bloom season. These results are consistent with the fact that small lakes associated with a large watershed area generally exhibit high levels of areal nutrient accumulation that rise with the drainage ratio, supporting phytoplankton growth. There were no significant differences in phytoplankton diversity among lakes (p > 0.05), remaining stable at the low Shannon index of 1.9–2.9, which is possibly due to high eutrophication pressure and similar local climatic conditions across the relatively limited study area. Overall, the results of this study will provide a valuable foundation for future efforts to improve water quality management efforts for urban lakes.
Drainage Ratio Controls Phytoplankton Abundance in Urban Lakes
Urban lakes located in densely populated regions are highly vulnerable freshwater ecosystems compared to lakes in rural areas due to intense anthropogenic activities. However, the impacts of intrinsic lake morphometry on the water quality of urban lakes remain unclear. In the present study, the water quality of 14 lakes and the underlying factors associated with such quality were explored in Wuhan City, China. Of these surveyed urban lakes, 92.9% were eutrophic or hypereutrophic; phytoplankton biomass ranged between 3.2 and 62.0 mg/L and was positively correlated with drainage ratio values (catchment area/lake area) during the phytoplankton bloom season. These results are consistent with the fact that small lakes associated with a large watershed area generally exhibit high levels of areal nutrient accumulation that rise with the drainage ratio, supporting phytoplankton growth. There were no significant differences in phytoplankton diversity among lakes (p > 0.05), remaining stable at the low Shannon index of 1.9–2.9, which is possibly due to high eutrophication pressure and similar local climatic conditions across the relatively limited study area. Overall, the results of this study will provide a valuable foundation for future efforts to improve water quality management efforts for urban lakes.
Drainage Ratio Controls Phytoplankton Abundance in Urban Lakes
Weijie Guo (author) / Ziqian Li (author) / Cai Li (author) / Boyi Liu (author) / Wenqing Shi (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
REVIEW OF STORMWATER SOURCE CONTROLS IN URBAN DRAINAGE
British Library Conference Proceedings | 2001
|Urban drainage control demonstration program of Canada's Great Lakes cleanup fund
British Library Conference Proceedings | 1994
|Discriminating four temperate lakes using phytoplankton absorption spectra
Online Contents | 2014
|