A platform for research: civil engineering, architecture and urbanism
SOLVING HEAT ENGINEERING PROBLEMS USING THE FINITE ELEMENT METHOD
Introduction: In the course of the study, we examined energy-efficient and environmentally friendly heat-insulating materials based on gypsum and gypsum-containing primary components. Purpose of the study: We aimed to assess the effectiveness of using gypsum materials in wall structures, by using the finite element method based on the ANSYS Steady State Thermal module. Porous materials of different densities (structural, structural and heat-insulating, and heatinsulating gypsum concrete) were used as wall materials. These materials were obtained as a result of the interaction between residual sulfuric acid adsorbed on the grains of “acidic” fluoroanhydrite and carbonate flour. Methods: The finite element method based on the ANSYS Steady State Thermal module was used. The thermal conductivity of the structures was evaluated in a three-dimensional coordinate system. The experimental values of thermal and physical characteristics were adopted for the walling fragments. Results: The problem was solved numerically, by using the finite element method based on the ANSYS Steady State Thermal module. We established that the developed structural and heat-insulating gypsum concrete is more effective since, under the set design conditions, the temperature of the inner surface of such a wall at the minimum (510 mm) and maximum (770 mm) structure thickness exceeds the temperature of the inner surface of walls made of different materials.
SOLVING HEAT ENGINEERING PROBLEMS USING THE FINITE ELEMENT METHOD
Introduction: In the course of the study, we examined energy-efficient and environmentally friendly heat-insulating materials based on gypsum and gypsum-containing primary components. Purpose of the study: We aimed to assess the effectiveness of using gypsum materials in wall structures, by using the finite element method based on the ANSYS Steady State Thermal module. Porous materials of different densities (structural, structural and heat-insulating, and heatinsulating gypsum concrete) were used as wall materials. These materials were obtained as a result of the interaction between residual sulfuric acid adsorbed on the grains of “acidic” fluoroanhydrite and carbonate flour. Methods: The finite element method based on the ANSYS Steady State Thermal module was used. The thermal conductivity of the structures was evaluated in a three-dimensional coordinate system. The experimental values of thermal and physical characteristics were adopted for the walling fragments. Results: The problem was solved numerically, by using the finite element method based on the ANSYS Steady State Thermal module. We established that the developed structural and heat-insulating gypsum concrete is more effective since, under the set design conditions, the temperature of the inner surface of such a wall at the minimum (510 mm) and maximum (770 mm) structure thickness exceeds the temperature of the inner surface of walls made of different materials.
SOLVING HEAT ENGINEERING PROBLEMS USING THE FINITE ELEMENT METHOD
Lubov Anikanova (author) / Olga Volkova (author) / Anna Kurmangalieva (author) / Nikita Mesheulov (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Finite element method for solving geodetic boundary value problems
Online Contents | 2009
|Finite element method for solving geodetic boundary value problems
Online Contents | 2009
|Methods for Solving Finite Element Mesh-Dependency Problems in Geotechnical Engineering—A Review
DOAJ | 2022
|Element-free method in solving discontinuous rock engineering problems
British Library Conference Proceedings | 2001
|