A platform for research: civil engineering, architecture and urbanism
Impact of Wall Configurations on Seismic Fragility of Steel-Sheathed Cold-Formed Steel-Framed Buildings
Seismic fragility of steel-sheathed cold-formed steel-framed (CFSF) structures is scarcely investigated; thus, the information for estimation of seismic losses of the steel-sheathed CFSF buildings is insufficient. This study aims to investigate the seismic fragility of steel-sheathed CFSF buildings with different wall configurations. Analytic models for four 2-story steel-sheathed CFSF buildings are established based on shaking table tests on steel-sheathed CFS walls. Then, a group of fragility curves for these buildings are generated. The results show that the thickness of steel sheathing and the fastener spacing of the wall have significant impact on seismic fragility of steel-sheathed CFSF buildings. The seismic fragility of the CFSF building can be reduced by increasing the thickness of steel sheathing or decreasing the fastener spacing. By increasing the thickness of steel sheathing, the reduction on probability is more obvious for the CP limit. It is also found that the exceeding probability is approximately linear with fastener spacing, with a slope in the range from 0.25%/mm to 0.50%/mm.
Impact of Wall Configurations on Seismic Fragility of Steel-Sheathed Cold-Formed Steel-Framed Buildings
Seismic fragility of steel-sheathed cold-formed steel-framed (CFSF) structures is scarcely investigated; thus, the information for estimation of seismic losses of the steel-sheathed CFSF buildings is insufficient. This study aims to investigate the seismic fragility of steel-sheathed CFSF buildings with different wall configurations. Analytic models for four 2-story steel-sheathed CFSF buildings are established based on shaking table tests on steel-sheathed CFS walls. Then, a group of fragility curves for these buildings are generated. The results show that the thickness of steel sheathing and the fastener spacing of the wall have significant impact on seismic fragility of steel-sheathed CFSF buildings. The seismic fragility of the CFSF building can be reduced by increasing the thickness of steel sheathing or decreasing the fastener spacing. By increasing the thickness of steel sheathing, the reduction on probability is more obvious for the CP limit. It is also found that the exceeding probability is approximately linear with fastener spacing, with a slope in the range from 0.25%/mm to 0.50%/mm.
Impact of Wall Configurations on Seismic Fragility of Steel-Sheathed Cold-Formed Steel-Framed Buildings
Liqiang Jiang (author) / Jihong Ye (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Design of steel sheathed cold-formed steel framed shear walls
Elsevier | 2013
|Design of steel sheathed cold-formed steel framed shear walls
Online Contents | 2014
|Experimental Seismic Fragility of Cold-Formed Steel Framed Gypsum Partition Walls
British Library Online Contents | 2013
|