A platform for research: civil engineering, architecture and urbanism
Determination of Environmental Impacts of Bituminous Highway’s by Life Cycle Assessment
Nowadays transportation is one of the most Indispensable parts of every society, which has significant effects on economics, society, and the environment. In this study; asphalt surfaced roads environmental loads using Lifecycle Assessment Analysis have been studied. This study aims to; assess environmental impacts of road construction, maintenance and its application with defining loads causes, results of the most important procedure throughout its lifecycle and suggestion resolves for critic processes in order to develop a perspective for decision-makers, managers and anyone who related to asphalt-surfaced roadways. In this paper Life Cycle Assessment (LCA) has been done in three categories (human health, ecosystem quality, and resources) using SimaPro 7.1 software. What makes this paper distinct from previous studies in road life cycle assessment is; a comprehensive analysis has been done in three main categories, which have subcategories that all the subcategories and categories analyzed with characterization, and weighting option, it is necessary to specified the most critique processes in road LCA, so that the next step to reduce the negative effects could be possible, there are no specific studies in road LCA so we did this study more specific in terms of environmental impacts details rather than just analysis 3 main categories. In the results, the resources category determined as the highest environment loads in asphalt surfaced roadways life cycle. Due to high fossil fuel affects which is one of the resources subcategories the resources category is the first impact category. Ecosystem quality and human health are respectively in the second and third places on the environmental impact.
Determination of Environmental Impacts of Bituminous Highway’s by Life Cycle Assessment
Nowadays transportation is one of the most Indispensable parts of every society, which has significant effects on economics, society, and the environment. In this study; asphalt surfaced roads environmental loads using Lifecycle Assessment Analysis have been studied. This study aims to; assess environmental impacts of road construction, maintenance and its application with defining loads causes, results of the most important procedure throughout its lifecycle and suggestion resolves for critic processes in order to develop a perspective for decision-makers, managers and anyone who related to asphalt-surfaced roadways. In this paper Life Cycle Assessment (LCA) has been done in three categories (human health, ecosystem quality, and resources) using SimaPro 7.1 software. What makes this paper distinct from previous studies in road life cycle assessment is; a comprehensive analysis has been done in three main categories, which have subcategories that all the subcategories and categories analyzed with characterization, and weighting option, it is necessary to specified the most critique processes in road LCA, so that the next step to reduce the negative effects could be possible, there are no specific studies in road LCA so we did this study more specific in terms of environmental impacts details rather than just analysis 3 main categories. In the results, the resources category determined as the highest environment loads in asphalt surfaced roadways life cycle. Due to high fossil fuel affects which is one of the resources subcategories the resources category is the first impact category. Ecosystem quality and human health are respectively in the second and third places on the environmental impact.
Determination of Environmental Impacts of Bituminous Highway’s by Life Cycle Assessment
Saeed Morsali (author) / Gamze yücel Işildar (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Highway's West-entrance to Vienna completed
Engineering Index Backfile | 1965
|British Library Conference Proceedings | 2014
|Quantitative Assessment of Environmental Impacts on Life Cycle of Highways
British Library Online Contents | 2003
|