A platform for research: civil engineering, architecture and urbanism
Industrial Symbiosis in Insect Production—A Sustainable Eco-Efficient and Circular Business Model
Insect meal (IM) is a source of high-quality protein for aquafeed while insect oil (IO) is a source of fatty acids used in monogastric feed with identical or better performance than premium fishmeal (FM) or vegetable oils (VOs) respectively. Although insects’ ability to feed on agricultural by-products and the entire valorization of insect products (IM, IO, frass) suggest insect production is sustainable, no studies have documented its environmental impact using industrial-scale production data. The present study is the first attributional life cycle assessment (A-LCA) based on data from an industrial-scale facility implementing an innovative symbiosis production model. This A-LCA was used to (i) assess the environmental performance of the symbiosis model vs. a no-symbiosis model and (ii) compare the environmental impacts of IM and IO production vs. their respective alternatives. The results revealed that the symbiosis model introduces a meaningful change in terms of environmental footprint by reducing CO2 emissions by 80% and fossil resources depletion by 83% compared to the no-symbiosis model. The higher sustainability of the IM and IO produced using the symbiosis model was also demonstrated, as CO2 emissions were reduced by at least 55% and 83% when compared to the best FM and VOs alternatives, respectively.
Industrial Symbiosis in Insect Production—A Sustainable Eco-Efficient and Circular Business Model
Insect meal (IM) is a source of high-quality protein for aquafeed while insect oil (IO) is a source of fatty acids used in monogastric feed with identical or better performance than premium fishmeal (FM) or vegetable oils (VOs) respectively. Although insects’ ability to feed on agricultural by-products and the entire valorization of insect products (IM, IO, frass) suggest insect production is sustainable, no studies have documented its environmental impact using industrial-scale production data. The present study is the first attributional life cycle assessment (A-LCA) based on data from an industrial-scale facility implementing an innovative symbiosis production model. This A-LCA was used to (i) assess the environmental performance of the symbiosis model vs. a no-symbiosis model and (ii) compare the environmental impacts of IM and IO production vs. their respective alternatives. The results revealed that the symbiosis model introduces a meaningful change in terms of environmental footprint by reducing CO2 emissions by 80% and fossil resources depletion by 83% compared to the no-symbiosis model. The higher sustainability of the IM and IO produced using the symbiosis model was also demonstrated, as CO2 emissions were reduced by at least 55% and 83% when compared to the best FM and VOs alternatives, respectively.
Industrial Symbiosis in Insect Production—A Sustainable Eco-Efficient and Circular Business Model
Chloé Phan Van PhI (author) / Maye Walraven (author) / Marine Bézagu (author) / Maxime Lefranc (author) / Clément Ray (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0