A platform for research: civil engineering, architecture and urbanism
Retrieval of Nitrogen Content in Apple Canopy Based on Unmanned Aerial Vehicle Hyperspectral Images Using a Modified Correlation Coefficient Method
The accurate retrieval of nitrogen content based on Unmanned Aerial Vehicle (UAV) hyperspectral images is limited due to uncertainties in determining the locations of nitrogen-sensitive wavelengths. This study developed a Modified Correlation Coefficient Method (MCCM) to select wavelengths sensitive to nitrogen content. The Normalized Difference Canopy Shadow Index (NDCSI) was applied to remove the shadows from UAV hyperspectral images, thus yielding the canopy spectral information. The MCCM was then used to screen the bands sensitive to nitrogen content and to construct spectral characteristic parameters. Finally, the optimal model for nitrogen content retrieval was established and selected. As a result, the screened sensitive wavelengths for nitrogen content selected were 470, 474, 490, 514, 582, 634, and 682 nm, respectively. Among the nitrogen content retrieval models, the best model was the Support Vector Machine (SVM) model. In the training set, this model outperformed the other models with an R2 of 0.733, RMSE of 6.00%, an nRMSE of 12.76%, and a MAE of 4.49%. Validated by the ground-measured nitrogen content, this model yielded good performance with an R2 of 0.671, an RMSE of 4.73%, an nRMSE of 14.83%, and a MAE of 3.98%. This study can provide a new method for vegetation nutrient content retrieval based on UAV hyperspectral data.
Retrieval of Nitrogen Content in Apple Canopy Based on Unmanned Aerial Vehicle Hyperspectral Images Using a Modified Correlation Coefficient Method
The accurate retrieval of nitrogen content based on Unmanned Aerial Vehicle (UAV) hyperspectral images is limited due to uncertainties in determining the locations of nitrogen-sensitive wavelengths. This study developed a Modified Correlation Coefficient Method (MCCM) to select wavelengths sensitive to nitrogen content. The Normalized Difference Canopy Shadow Index (NDCSI) was applied to remove the shadows from UAV hyperspectral images, thus yielding the canopy spectral information. The MCCM was then used to screen the bands sensitive to nitrogen content and to construct spectral characteristic parameters. Finally, the optimal model for nitrogen content retrieval was established and selected. As a result, the screened sensitive wavelengths for nitrogen content selected were 470, 474, 490, 514, 582, 634, and 682 nm, respectively. Among the nitrogen content retrieval models, the best model was the Support Vector Machine (SVM) model. In the training set, this model outperformed the other models with an R2 of 0.733, RMSE of 6.00%, an nRMSE of 12.76%, and a MAE of 4.49%. Validated by the ground-measured nitrogen content, this model yielded good performance with an R2 of 0.671, an RMSE of 4.73%, an nRMSE of 14.83%, and a MAE of 3.98%. This study can provide a new method for vegetation nutrient content retrieval based on UAV hyperspectral data.
Retrieval of Nitrogen Content in Apple Canopy Based on Unmanned Aerial Vehicle Hyperspectral Images Using a Modified Correlation Coefficient Method
Meixuan Li (author) / Xicun Zhu (author) / Wei Li (author) / Xiaoying Tang (author) / Xinyang Yu (author) / Yuanmao Jiang (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Multi-Model Rice Canopy Chlorophyll Content Inversion Based on UAV Hyperspectral Images
DOAJ | 2023
|Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements
Online Contents | 2012
|European Patent Office | 2024
|