A platform for research: civil engineering, architecture and urbanism
Mapping Coarse Woody Debris with Random Forest Classification of Centimetric Aerial Imagery
Coarse woody debris (CWD; large parts of dead trees) is a vital element of forest ecosystems, playing an important role in nutrient cycling, carbon storage, fire fuel, microhabitats, and overall forest structure. However, there is a lack of effective tools for identifying and mapping both standing (snags) and downed (logs) CWD in complex natural settings. We applied a random forest machine learning classifier to detect CWD in centimetric aerial imagery acquired over a 270-hectare study area in the boreal forest of Alberta, Canada. We used a geographic object-based image analysis (GEOBIA) approach in the classification with spectral, spatial, and LiDAR (light detection and ranging)-derived height predictor variables. We found CWD to be detected with great accuracy (93.4 ± 4.2% completeness and 94.5 ± 3.2% correctness) when training samples were located within the application area, and with very good accuracy (84.2 ± 5.2% completeness and 92.2 ± 3.2% correctness) when training samples were located outside the application area. The addition of LiDAR-derived variables did not increase the accuracy of CWD detection overall (<2%), but aided significantly (p < 0.001) in the distinction between logs and snags. Foresters and researchers interested in CWD can take advantage of these novel methods to produce accurate maps of logs and snags, which will contribute to the understanding and management of forest ecosystems.
Mapping Coarse Woody Debris with Random Forest Classification of Centimetric Aerial Imagery
Coarse woody debris (CWD; large parts of dead trees) is a vital element of forest ecosystems, playing an important role in nutrient cycling, carbon storage, fire fuel, microhabitats, and overall forest structure. However, there is a lack of effective tools for identifying and mapping both standing (snags) and downed (logs) CWD in complex natural settings. We applied a random forest machine learning classifier to detect CWD in centimetric aerial imagery acquired over a 270-hectare study area in the boreal forest of Alberta, Canada. We used a geographic object-based image analysis (GEOBIA) approach in the classification with spectral, spatial, and LiDAR (light detection and ranging)-derived height predictor variables. We found CWD to be detected with great accuracy (93.4 ± 4.2% completeness and 94.5 ± 3.2% correctness) when training samples were located within the application area, and with very good accuracy (84.2 ± 5.2% completeness and 92.2 ± 3.2% correctness) when training samples were located outside the application area. The addition of LiDAR-derived variables did not increase the accuracy of CWD detection overall (<2%), but aided significantly (p < 0.001) in the distinction between logs and snags. Foresters and researchers interested in CWD can take advantage of these novel methods to produce accurate maps of logs and snags, which will contribute to the understanding and management of forest ecosystems.
Mapping Coarse Woody Debris with Random Forest Classification of Centimetric Aerial Imagery
Gustavo Lopes Queiroz (author) / Gregory J. McDermid (author) / Guillermo Castilla (author) / Julia Linke (author) / Mir Mustafizur Rahman (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Coarse Woody Debris Following Silviculture Treatments in Southwest Mixed-Conifer Forest
DOAJ | 2018
|Coarse Woody Debris Management with Ambiguous Chance Constrained Robust Optimization
DOAJ | 2019
|Applications of electromagnetic centimetric waves
Engineering Index Backfile | 1942
|Potentials and Unknowns in Managing Coarse Woody Debris for Soil Functioning
DOAJ | 2017
|