A platform for research: civil engineering, architecture and urbanism
Size Control of Polymeric Particle in Soap-Free Emulsion Polymerization
The process of synthesis of polymeric particle in soap-free system was observed in-situ on the molecular scale by using an atomic force microscope (AFM). Using cationic water-soluble initiators enabled all of the polymeric materials to be adsorbed on the mica surface electrostatically. This adsorption technique of polymeric materials in the bulk obtained the AFM images of them throughout the reaction and to discuss the real growth mechanism of polymeric particles. The followings are found; the polymeric materials are continuously generated in the bulk throughout the reaction; and they make a contribution to the particle growth. Furthermore, soap-free emulsion polymerization (SFEP) of aromatic vinyl monomer using oil-soluble initiators was studied to synthesize micron-sized particles. Oil-soluble initiator, such as AIBN, worked like a water-soluble initiator in SFEP to prepare monodispersed particles with negative charges, probably because of the pi electron cloud of phenyl ring in a monomer. The addition of an electrolyte enabled secondary particles in the bulk to enhance hetero-coagulation rate for particle growth. Changing the concentration and valence of electrolyte enabled us to control the size in SFEP using AIBN. These methods enabled reaction time to be reduced for the synthesis of micron-sized polymeric particles in soap-free system.
Size Control of Polymeric Particle in Soap-Free Emulsion Polymerization
The process of synthesis of polymeric particle in soap-free system was observed in-situ on the molecular scale by using an atomic force microscope (AFM). Using cationic water-soluble initiators enabled all of the polymeric materials to be adsorbed on the mica surface electrostatically. This adsorption technique of polymeric materials in the bulk obtained the AFM images of them throughout the reaction and to discuss the real growth mechanism of polymeric particles. The followings are found; the polymeric materials are continuously generated in the bulk throughout the reaction; and they make a contribution to the particle growth. Furthermore, soap-free emulsion polymerization (SFEP) of aromatic vinyl monomer using oil-soluble initiators was studied to synthesize micron-sized particles. Oil-soluble initiator, such as AIBN, worked like a water-soluble initiator in SFEP to prepare monodispersed particles with negative charges, probably because of the pi electron cloud of phenyl ring in a monomer. The addition of an electrolyte enabled secondary particles in the bulk to enhance hetero-coagulation rate for particle growth. Changing the concentration and valence of electrolyte enabled us to control the size in SFEP using AIBN. These methods enabled reaction time to be reduced for the synthesis of micron-sized polymeric particles in soap-free system.
Size Control of Polymeric Particle in Soap-Free Emulsion Polymerization
Tetsuya Yamamoto (author) / Ko Higashitani (author)
2017
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Soap-Free Emulsion Polymerization for New Building Sealant
British Library Conference Proceedings | 2012
|Study on polymerization of acrylic modified polyurethane soap-free emulsion
British Library Online Contents | 2006
|British Library Online Contents | 2014
|British Library Online Contents | 2019
|British Library Online Contents | 2019
|