A platform for research: civil engineering, architecture and urbanism
Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production
Developing highly efficient biocatalyst is a pertinent requirement for biofuels production, in particularly biodiesel/bioethanol. To circumvent the minimal efficiency of conventionally used biocatalysts, nanotechnology paves a way by indulging nanoparticles as carriers of biocatalysts. The nanobiocatalysts so formed are applied as a tool for utilizing wide set of biomass related molecules into biofuels. The disadvantages of conventional biocatalysts such as catalyst deactivation, mass transfer, poisoning, and long reaction time can be outstripped by novel nanobiocatalysts. Nanobiocatalyst increases the catalytic activity; and this higher activity is because of the increased surface to volume ratio and hence it can act as a deoxygenation catalyst too. In recent years, exploiting modern tools for nanoparticles synthesis and characterization yielded high quality optimized and conditioned nanocatalyst systems such as metal oxide nanoparticles, magnetic nanoparticles, and carbon nanotubes to increase the biofuel productivity. Nanomaterial immobilized lipases and cellulases are predictably innovative catalysts having remarkable properties. The present article is critically discussed various nanomaterial immobilized enzyme development and its influence over production of biofuel. Continuous research and development and novel nanobiocatalyst engineering is essential for stabilization of biofuel producing companies.
Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production
Developing highly efficient biocatalyst is a pertinent requirement for biofuels production, in particularly biodiesel/bioethanol. To circumvent the minimal efficiency of conventionally used biocatalysts, nanotechnology paves a way by indulging nanoparticles as carriers of biocatalysts. The nanobiocatalysts so formed are applied as a tool for utilizing wide set of biomass related molecules into biofuels. The disadvantages of conventional biocatalysts such as catalyst deactivation, mass transfer, poisoning, and long reaction time can be outstripped by novel nanobiocatalysts. Nanobiocatalyst increases the catalytic activity; and this higher activity is because of the increased surface to volume ratio and hence it can act as a deoxygenation catalyst too. In recent years, exploiting modern tools for nanoparticles synthesis and characterization yielded high quality optimized and conditioned nanocatalyst systems such as metal oxide nanoparticles, magnetic nanoparticles, and carbon nanotubes to increase the biofuel productivity. Nanomaterial immobilized lipases and cellulases are predictably innovative catalysts having remarkable properties. The present article is critically discussed various nanomaterial immobilized enzyme development and its influence over production of biofuel. Continuous research and development and novel nanobiocatalyst engineering is essential for stabilization of biofuel producing companies.
Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production
Nisha Singh (author) / B.S. Dhanya (author) / Madan L. Verma (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Immobilized Biocatalysts: Novel Approaches and Tools for Binding Enzymes to Supports
British Library Online Contents | 2011
|Nanomaterials : applications in biofuels and bioenergy production systems
UB Braunschweig | 2021
|Envirogen developing hazwaste biocatalysts
Online Contents | 1997