A platform for research: civil engineering, architecture and urbanism
Circularity Study on PET Bottle-To-Bottle Recycling
With the European Green Deal, the importance of recycled products and materials has increased. Specifically, for PET bottles, a high content of recycled material (rPET) is demanded by the industry and consumers. This study was carried out in a lab environment replicating real-life industrial processes, to investigate the possible impacts on rPET quality over eleven recycling loops, aiming to use high amounts of rPET repetitively. A cycle included extrusion, solid state polycondensation (SSP), a second extrusion to simulate bottle production, hot wash and a drying step. 75% rPET and 25% virgin PET were extruded in eleven cycles to simulate a recycling and production process. Samples underwent chemical, physical and biological analysis. The quality of the rPET material was not adversely affected. Parameters such as coloring, intrinsic viscosity, concentration of critical chemicals and presence of mutagenic contaminants could be positively assessed. The quality of the produced material was likely influenced by the input material’s high standard. A closed loop PET bottle recycling process using an rPET content of up to 75% was possible when following the proposed process, indicating that this level of recycled content can be maintained indefinitely without compromising quality.
Circularity Study on PET Bottle-To-Bottle Recycling
With the European Green Deal, the importance of recycled products and materials has increased. Specifically, for PET bottles, a high content of recycled material (rPET) is demanded by the industry and consumers. This study was carried out in a lab environment replicating real-life industrial processes, to investigate the possible impacts on rPET quality over eleven recycling loops, aiming to use high amounts of rPET repetitively. A cycle included extrusion, solid state polycondensation (SSP), a second extrusion to simulate bottle production, hot wash and a drying step. 75% rPET and 25% virgin PET were extruded in eleven cycles to simulate a recycling and production process. Samples underwent chemical, physical and biological analysis. The quality of the rPET material was not adversely affected. Parameters such as coloring, intrinsic viscosity, concentration of critical chemicals and presence of mutagenic contaminants could be positively assessed. The quality of the produced material was likely influenced by the input material’s high standard. A closed loop PET bottle recycling process using an rPET content of up to 75% was possible when following the proposed process, indicating that this level of recycled content can be maintained indefinitely without compromising quality.
Circularity Study on PET Bottle-To-Bottle Recycling
Elisabeth Pinter (author) / Frank Welle (author) / Elisa Mayrhofer (author) / Andreas Pechhacker (author) / Lukas Motloch (author) / Vera Lahme (author) / Andy Grant (author) / Manfred Tacker (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Jasper Morrison - Bottle bottle-rack
Online Contents | 1994
Inside Look - Recycling in Cyberspace "Bottle bills"
Online Contents | 2001
The status of all-plastic-bottle recycling collection
Online Contents | 2003
|