A platform for research: civil engineering, architecture and urbanism
Satellite and airborne remote sensing of gross primary productivity in boreal Alaskan lakes
In terrestrial and marine ecosystems, remote sensing has been used to estimate gross primary productivity (GPP) for decades, but few applications exist for shallow freshwater ecosystems.Here we show field-based GPP correlates with satellite and airborne lake color across a range of optically and limnologically diverse lakes in interior Alaska. A strong relationship between in situ GPP derived from stable oxygen isotopes (δ ^18 O) and space-based lake color from satellites (e.g. Landsat-8, Sentinel-2 and CubeSats) and airborne imagery (AVIRIS-NG) demonstrates the potential power of this technique for improving spatial and temporal monitoring of lake GPP when coupled with additional field validation measurements across different systems. In shallow waters clear enough for sunlight to reach lake bottoms, both submerged vegetation (macrophytes and algae) and phytoplankton likely contribute to GPP. The stable isotopes and remotely sensed shallow lake color used here integrate both components. These results demonstrate the utility of lake color as a feasible means for mapping lake GPP from remote sensing. This novel methodology estimates GPP from remote sensing in shallow lakes by combining field measurements of oxygen isotopes with airborne, satellite and CubeSat imagery. This use of lake color for providing insight into ecological processes of shallow lakes is recommended, especially for remote arctic and boreal landscapes.
Satellite and airborne remote sensing of gross primary productivity in boreal Alaskan lakes
In terrestrial and marine ecosystems, remote sensing has been used to estimate gross primary productivity (GPP) for decades, but few applications exist for shallow freshwater ecosystems.Here we show field-based GPP correlates with satellite and airborne lake color across a range of optically and limnologically diverse lakes in interior Alaska. A strong relationship between in situ GPP derived from stable oxygen isotopes (δ ^18 O) and space-based lake color from satellites (e.g. Landsat-8, Sentinel-2 and CubeSats) and airborne imagery (AVIRIS-NG) demonstrates the potential power of this technique for improving spatial and temporal monitoring of lake GPP when coupled with additional field validation measurements across different systems. In shallow waters clear enough for sunlight to reach lake bottoms, both submerged vegetation (macrophytes and algae) and phytoplankton likely contribute to GPP. The stable isotopes and remotely sensed shallow lake color used here integrate both components. These results demonstrate the utility of lake color as a feasible means for mapping lake GPP from remote sensing. This novel methodology estimates GPP from remote sensing in shallow lakes by combining field measurements of oxygen isotopes with airborne, satellite and CubeSat imagery. This use of lake color for providing insight into ecological processes of shallow lakes is recommended, especially for remote arctic and boreal landscapes.
Satellite and airborne remote sensing of gross primary productivity in boreal Alaskan lakes
Catherine Kuhn (author) / Matthew Bogard (author) / Sarah Ellen Johnston (author) / Aji John (author) / Eric Vermote (author) / Rob Spencer (author) / Mark Dornblaser (author) / Kim Wickland (author) / Rob Striegl (author) / David Butman (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
A Process-Based Boreal Ecosystem Productivity Simulator Using Remote Sensing Inputs
Online Contents | 1997
|Modeling L-Band Radar Backscatter of Alaskan Boreal Forest
Online Contents | 1993
|