A platform for research: civil engineering, architecture and urbanism
Can we trust CMIP5/6 future projections of European winter precipitation?
IPCC models project a likely increase in winter precipitation over northern Europe under a high-emission scenario. These projections, however, typically rely on relatively coarse ∼100 km resolution models that can misrepresent important processes driving precipitation, such as extratropical cyclone activity, and ocean eddies. Here, we show that a pioneering 50 km atmosphere–1/12° ocean global coupled model projects a substantially larger increase in winter precipitation over northwestern Europe by mid-century than lower-resolution configurations. For this increase, both the highest ocean and atmosphere model resolutions are essential: only the eddy-rich (1/12°) ocean projects a progressive northward shift of the Gulf Stream. This leads to a strong regional ocean surface warming that intensifies air–sea heat fluxes and baroclinicity. For this then to translate into a strengthening of North Atlantic extratropical cyclone activity, the 50 km atmosphere is essential, as it enables enhanced diabatic heating from water vapor condensation and an acceleration of the upper-level mean flow, which weaken vertical stability. Our results suggest that all recent IPCC climate projections using traditional ∼100 km resolution models could be underestimating the precipitation increase over Europe in winter and, consequently, the related potential risks.
Can we trust CMIP5/6 future projections of European winter precipitation?
IPCC models project a likely increase in winter precipitation over northern Europe under a high-emission scenario. These projections, however, typically rely on relatively coarse ∼100 km resolution models that can misrepresent important processes driving precipitation, such as extratropical cyclone activity, and ocean eddies. Here, we show that a pioneering 50 km atmosphere–1/12° ocean global coupled model projects a substantially larger increase in winter precipitation over northwestern Europe by mid-century than lower-resolution configurations. For this increase, both the highest ocean and atmosphere model resolutions are essential: only the eddy-rich (1/12°) ocean projects a progressive northward shift of the Gulf Stream. This leads to a strong regional ocean surface warming that intensifies air–sea heat fluxes and baroclinicity. For this then to translate into a strengthening of North Atlantic extratropical cyclone activity, the 50 km atmosphere is essential, as it enables enhanced diabatic heating from water vapor condensation and an acceleration of the upper-level mean flow, which weaken vertical stability. Our results suggest that all recent IPCC climate projections using traditional ∼100 km resolution models could be underestimating the precipitation increase over Europe in winter and, consequently, the related potential risks.
Can we trust CMIP5/6 future projections of European winter precipitation?
E Moreno-Chamarro (author) / L-P Caron (author) / P Ortega (author) / S Loosveldt Tomas (author) / M J Roberts (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
The Future of Drought in the Southeastern U.S.: Projections from Downscaled CMIP5 Models
DOAJ | 2019
|