A platform for research: civil engineering, architecture and urbanism
Formulating Equations for Estimating Forest Stand Carbon Stock for Various Tree Species Groups in Northern Thailand
Through this study, we established equations for estimating the standing tree carbon stock based on 24 tree species in multiple size classes in a case study at the Ngao Demonstration Forest (NDF) in northern Thailand. Four hundred thirty-nine wood samples from trees in mixed deciduous forest (MDF), dry dipterocarp forest (DDF), and dry evergreen forest (DEF) were collected using non-destructive methods to estimate aboveground carbon equations through statistical regression. The equations were established based on four criteria: (1) the coefficient of determination (R2), (2) standard error of estimate (SE), (3) F-value, and (4) significant value (p-value, α ≤ 0.05). The aboveground carbon stock (C) equations for standing trees in the MDF was C = 0.0199DBH2.1887H0.5825, for DDF was C = 0.0145DBH2.1435H0.748, for DEF was C = 0.0167DBH2.1423H0.7070, and the general equation for all species/wood density groups was C = 0.017543DBH2.1625H0.6614, where DBH is tree diameter at breast height, and H is tree total height. The aboveground carbon stock in the DDF, MDF, and DEF was 142, 53.02, and 12 tons/ha, respectively, and the estimated aboveground carbon stock in the Mae Huad sector at the NDF was 61 tons/ha.
Formulating Equations for Estimating Forest Stand Carbon Stock for Various Tree Species Groups in Northern Thailand
Through this study, we established equations for estimating the standing tree carbon stock based on 24 tree species in multiple size classes in a case study at the Ngao Demonstration Forest (NDF) in northern Thailand. Four hundred thirty-nine wood samples from trees in mixed deciduous forest (MDF), dry dipterocarp forest (DDF), and dry evergreen forest (DEF) were collected using non-destructive methods to estimate aboveground carbon equations through statistical regression. The equations were established based on four criteria: (1) the coefficient of determination (R2), (2) standard error of estimate (SE), (3) F-value, and (4) significant value (p-value, α ≤ 0.05). The aboveground carbon stock (C) equations for standing trees in the MDF was C = 0.0199DBH2.1887H0.5825, for DDF was C = 0.0145DBH2.1435H0.748, for DEF was C = 0.0167DBH2.1423H0.7070, and the general equation for all species/wood density groups was C = 0.017543DBH2.1625H0.6614, where DBH is tree diameter at breast height, and H is tree total height. The aboveground carbon stock in the DDF, MDF, and DEF was 142, 53.02, and 12 tons/ha, respectively, and the estimated aboveground carbon stock in the Mae Huad sector at the NDF was 61 tons/ha.
Formulating Equations for Estimating Forest Stand Carbon Stock for Various Tree Species Groups in Northern Thailand
Khwanchai Duangsathaporn (author) / Narapong Sangram (author) / Yenemurwon Omule (author) / Patsi Prasomsin (author) / Kritsadapan Palakit (author) / Pichit Lumyai (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Selecting Suitable Tree Species for Direct Seeding to Restore Forest Ecosystems in Northern Thailand
DOAJ | 2024
|Forest Carbon Density Estimation Using Tree Species Diversity and Stand Spatial Structure Indices
DOAJ | 2023
|DOAJ | 2022
|