A platform for research: civil engineering, architecture and urbanism
Robustness Evaluations of Sustainable Machine Learning Models against Data Poisoning Attacks in the Internet of Things
With the increasing popularity of the Internet of Things (IoT) platforms, the cyber security of these platforms is a highly active area of research. One key technology underpinning smart IoT systems is machine learning, which classifies and predicts events from large-scale data in IoT networks. Machine learning is susceptible to cyber attacks, particularly data poisoning attacks that inject false data when training machine learning models. Data poisoning attacks degrade the performances of machine learning models. It is an ongoing research challenge to develop trustworthy machine learning models resilient and sustainable against data poisoning attacks in IoT networks. We studied the effects of data poisoning attacks on machine learning models, including the gradient boosting machine, random forest, naive Bayes, and feed-forward deep learning, to determine the levels to which the models should be trusted and said to be reliable in real-world IoT settings. In the training phase, a label modification function is developed to manipulate legitimate input classes. The function is employed at data poisoning rates of 5%, 10%, 20%, and 30% that allow the comparison of the poisoned models and display their performance degradations. The machine learning models have been evaluated using the ToN_IoT and UNSW NB-15 datasets, as they include a wide variety of recent legitimate and attack vectors. The experimental results revealed that the models’ performances will be degraded, in terms of accuracy and detection rates, if the number of the trained normal observations is not significantly larger than the poisoned data. At the rate of data poisoning of 30% or greater on input data, machine learning performances are significantly degraded.
Robustness Evaluations of Sustainable Machine Learning Models against Data Poisoning Attacks in the Internet of Things
With the increasing popularity of the Internet of Things (IoT) platforms, the cyber security of these platforms is a highly active area of research. One key technology underpinning smart IoT systems is machine learning, which classifies and predicts events from large-scale data in IoT networks. Machine learning is susceptible to cyber attacks, particularly data poisoning attacks that inject false data when training machine learning models. Data poisoning attacks degrade the performances of machine learning models. It is an ongoing research challenge to develop trustworthy machine learning models resilient and sustainable against data poisoning attacks in IoT networks. We studied the effects of data poisoning attacks on machine learning models, including the gradient boosting machine, random forest, naive Bayes, and feed-forward deep learning, to determine the levels to which the models should be trusted and said to be reliable in real-world IoT settings. In the training phase, a label modification function is developed to manipulate legitimate input classes. The function is employed at data poisoning rates of 5%, 10%, 20%, and 30% that allow the comparison of the poisoned models and display their performance degradations. The machine learning models have been evaluated using the ToN_IoT and UNSW NB-15 datasets, as they include a wide variety of recent legitimate and attack vectors. The experimental results revealed that the models’ performances will be degraded, in terms of accuracy and detection rates, if the number of the trained normal observations is not significantly larger than the poisoned data. At the rate of data poisoning of 30% or greater on input data, machine learning performances are significantly degraded.
Robustness Evaluations of Sustainable Machine Learning Models against Data Poisoning Attacks in the Internet of Things
Corey Dunn (author) / Nour Moustafa (author) / Benjamin Turnbull (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Attacks Detection in Internet of Things Using Machine Learning Techniques: A Review
DOAJ | 2024
|Sustainable Irrigation Requirement Prediction Using Internet of Things and Transfer Learning
DOAJ | 2023
|Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System
DOAJ | 2020
|