A platform for research: civil engineering, architecture and urbanism
Properties of High-Strength Concrete Incorporating Calcined Diatomaceous Earth, Polypropylene, and Glass Fibers
This study was aimed at determining the hardened and fresh properties as well as the high-temperature resistance of high-strength concrete (HSC) produced by incorporating diatomaceous earth, polypropylene, and glass fibers. CDE (calcined diatomaceous earth) was employed as a 10% cement replacement, while polypropylene and glass fibers were added separately to the mixtures at 0.2, 0.4, 0.6, 0.8, and 1.0% volumetric contents. Moreover, the mixtures without using CDE and fibers were used as references. The concrete mixtures were fabricated, followed by the determination of the fresh concrete flow, the absorption capacity, and the flexural, compressive, and splitting tensile strengths of hardened concrete. Furthermore, the specimens fabricated for the hardened concrete were exposed to temperatures of 400 °C, 500 °C, and 600 °C, and the remaining compressive strength was examined. The findings suggested that the incorporation of polypropylene and glass fibers in HSC with CDE enhanced the compressive, flexural, and splitting tensile strengths by 23.4 and 32.6%, 70.0 and 83.5%, and 18.9 and 17.9%, respectively. Moreover, the inclusion of polypropylene and glass fibers reduced the absorption of hardened concrete. Meanwhile, the inclusion of CDE lowered the strengths and increased the absorption. It was further identified that the incorporation of CDE enhanced the resistance of HSC to high temperatures, while polypropylene and glass fibers lowered the resistance. The incorporation of CDE, polypropylene, and glass fibers also lowered the flow of fresh concrete.
Properties of High-Strength Concrete Incorporating Calcined Diatomaceous Earth, Polypropylene, and Glass Fibers
This study was aimed at determining the hardened and fresh properties as well as the high-temperature resistance of high-strength concrete (HSC) produced by incorporating diatomaceous earth, polypropylene, and glass fibers. CDE (calcined diatomaceous earth) was employed as a 10% cement replacement, while polypropylene and glass fibers were added separately to the mixtures at 0.2, 0.4, 0.6, 0.8, and 1.0% volumetric contents. Moreover, the mixtures without using CDE and fibers were used as references. The concrete mixtures were fabricated, followed by the determination of the fresh concrete flow, the absorption capacity, and the flexural, compressive, and splitting tensile strengths of hardened concrete. Furthermore, the specimens fabricated for the hardened concrete were exposed to temperatures of 400 °C, 500 °C, and 600 °C, and the remaining compressive strength was examined. The findings suggested that the incorporation of polypropylene and glass fibers in HSC with CDE enhanced the compressive, flexural, and splitting tensile strengths by 23.4 and 32.6%, 70.0 and 83.5%, and 18.9 and 17.9%, respectively. Moreover, the inclusion of polypropylene and glass fibers reduced the absorption of hardened concrete. Meanwhile, the inclusion of CDE lowered the strengths and increased the absorption. It was further identified that the incorporation of CDE enhanced the resistance of HSC to high temperatures, while polypropylene and glass fibers lowered the resistance. The incorporation of CDE, polypropylene, and glass fibers also lowered the flow of fresh concrete.
Properties of High-Strength Concrete Incorporating Calcined Diatomaceous Earth, Polypropylene, and Glass Fibers
Muttaqin Hasan (author) / Yulius Rief Alkhaly (author) / Hamzani (author) / Rijalul Fikri (author) / Taufiq Saidi (author)
2025
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Properties of Concrete Containing Diatomaceous Earth
Online Contents | 2003
|Properties of Concrete Containing Diatomaceous Earth
British Library Online Contents | 2003
|Engineering Index Backfile | 1929
|Engineering Index Backfile | 1932
|