A platform for research: civil engineering, architecture and urbanism
Application of Micro-structured Sunlighting Systems in Different Climatic Zones
Two-sided micro-structures on windowpanes have been developed for redirecting sunlight into the depth of rooms in order to improve daylighting. In a joint research project comprehensive sunlighting-systems for windows are developed, integrating micro-structures in triple-glass units. The fixed units redirect sunlight to the ceiling and the depth of the room, avoiding glare. The system works for all solar altitudes and therefore can be applied in locations of all latitudes and climate zones. The study compares the energy efficiency of the sunlighting system in different locations. The performance of the sunlighting system has been simulated by tools like DiaLux and tested by measurements. Based on these validated data, a simplified design tool for early design stages is developed. It uses sun-path diagrams to define the annual hours of direct sunlight on windows in the main orientations (N, E, S, and W). This theoretical figure is corrected by the realistic percentage of sunshine hours taking into account the annual time of covered sky of typical climatic regions. Resulting actual hours of insolation (and light redirection) for the main window orientations are defined for a variation of latitudes and climates. Examples of typical office rooms located in latitudes between 0° and 60° and climates with varying cloudiness are used to demonstrate the sunlighting potential. The annual hours of sufficient lighting under clear sky conditions range between 700 and 1900. Resulting savings in lighting energy allow for the return of an investment of 50 to 100 €/m² glazing within 2 years for certain assumptions. The additional costs for the light redirecting micro-structures in the glass are not likely to exceed this range.
Application of Micro-structured Sunlighting Systems in Different Climatic Zones
Two-sided micro-structures on windowpanes have been developed for redirecting sunlight into the depth of rooms in order to improve daylighting. In a joint research project comprehensive sunlighting-systems for windows are developed, integrating micro-structures in triple-glass units. The fixed units redirect sunlight to the ceiling and the depth of the room, avoiding glare. The system works for all solar altitudes and therefore can be applied in locations of all latitudes and climate zones. The study compares the energy efficiency of the sunlighting system in different locations. The performance of the sunlighting system has been simulated by tools like DiaLux and tested by measurements. Based on these validated data, a simplified design tool for early design stages is developed. It uses sun-path diagrams to define the annual hours of direct sunlight on windows in the main orientations (N, E, S, and W). This theoretical figure is corrected by the realistic percentage of sunshine hours taking into account the annual time of covered sky of typical climatic regions. Resulting actual hours of insolation (and light redirection) for the main window orientations are defined for a variation of latitudes and climates. Examples of typical office rooms located in latitudes between 0° and 60° and climates with varying cloudiness are used to demonstrate the sunlighting potential. The annual hours of sufficient lighting under clear sky conditions range between 700 and 1900. Resulting savings in lighting energy allow for the return of an investment of 50 to 100 €/m² glazing within 2 years for certain assumptions. The additional costs for the light redirecting micro-structures in the glass are not likely to exceed this range.
Application of Micro-structured Sunlighting Systems in Different Climatic Zones
Helmut F.O. Mueller (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Efficiency of Microstructured Sunlighting Systems in Different Climatic Zones
Springer Verlag | 2019
|Sunlighting evaluation in buildings
Taylor & Francis Verlag | 1995
|Sunlighting as formgiver for architecture
TIBKAT | 1986
|Faith Lutheran Church: An Indirect Sunlighting Strategy
British Library Conference Proceedings | 1993
|Cost/benefit analysis for building core sunlighting systems
Online Contents | 2016
|