A platform for research: civil engineering, architecture and urbanism
Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability
The purpose of this study is to design a novel custom power demand forecasting algorithm based on the LSTM Deep-Learning method regarding the recent power demand patterns. We performed tests to verify the error rates of the forecasting module, and to confirm the sudden change of power patterns in the actual power demand monitoring system. We collected the power usage data in every five-minute resolution in a day from some groups of the residential, public offices, hospitals, and industrial factories buildings in one year. In order to grasp the external factors and to predict the power demand of each facility, a comparative experiment was conducted in three ways; short-term, long-term, seasonal forecasting exp[eriments. The seasonal patterns of power demand usages were analyzed regarding the residential building. The overall error rates of power demand forecasting using the proposed LSTM module were reduced in terms of each facility. The predicted power demand data shows a certain pattern according to each facility. Especially, the forecasting difference of the residential seasonal forecasting pattern in summer and winter was very different from other seasons. It is possible to reduce unnecessary demand management costs by the designed accurate forecasting method.
Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability
The purpose of this study is to design a novel custom power demand forecasting algorithm based on the LSTM Deep-Learning method regarding the recent power demand patterns. We performed tests to verify the error rates of the forecasting module, and to confirm the sudden change of power patterns in the actual power demand monitoring system. We collected the power usage data in every five-minute resolution in a day from some groups of the residential, public offices, hospitals, and industrial factories buildings in one year. In order to grasp the external factors and to predict the power demand of each facility, a comparative experiment was conducted in three ways; short-term, long-term, seasonal forecasting exp[eriments. The seasonal patterns of power demand usages were analyzed regarding the residential building. The overall error rates of power demand forecasting using the proposed LSTM module were reduced in terms of each facility. The predicted power demand data shows a certain pattern according to each facility. Especially, the forecasting difference of the residential seasonal forecasting pattern in summer and winter was very different from other seasons. It is possible to reduce unnecessary demand management costs by the designed accurate forecasting method.
Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability
Eunjeong Choi (author) / Soohwan Cho (author) / Dong Keun Kim (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
A hybrid Wavelet-CNN-LSTM deep learning model for short-term urban water demand forecasting
Springer Verlag | 2023
|Clean Water Demand Prediction Model Using The Long Short Term Memory (LSTM) Method
BASE | 2023
|Long Short-Term Memory (LSTM) Based Model for Flood Forecasting in Xiangjiang River
Springer Verlag | 2023
|Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting
DOAJ | 2019
|