A platform for research: civil engineering, architecture and urbanism
Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia
Flash flooding is one of the most significant natural disasters in arid/hyperarid regions and causes vast property damage and a large number of deaths. For mitigating and reducing flood risks, data from several remote sensing satellite images—Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), Landsat 8 Operational Land Imager (OLI), and Tropical Rainfall Measuring Mission (TRMM)—were prepared and combined through a GIS-based multicriteria decision-making technique to test and delineate the flash flood vulnerable areas of Wadi Hali in southwestern Saudi Arabia. Several flash flood thematic layers representing topographic, geomorphic, climatic, and hydrological conditions were prepared, normalized, and combined through a GIS- based analytic hierarchy process (AHP) technique to obtain flash flood hazard zones (FFHs). This method successfully presented a satisfactory output map that revealed six zones of flood risk, and areas of extreme hazard covered about 13% of the entire basin. Landsat 8 band composite 7, 5, and 3 and field data validated the FFHs. This map considered a key requirement for sustaining safe settlements downstream of Wadi Hali. Overall, the integration of remote sensing and GIS techniques revealed significant areas of flash flood zones in an arid region.
Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia
Flash flooding is one of the most significant natural disasters in arid/hyperarid regions and causes vast property damage and a large number of deaths. For mitigating and reducing flood risks, data from several remote sensing satellite images—Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), Landsat 8 Operational Land Imager (OLI), and Tropical Rainfall Measuring Mission (TRMM)—were prepared and combined through a GIS-based multicriteria decision-making technique to test and delineate the flash flood vulnerable areas of Wadi Hali in southwestern Saudi Arabia. Several flash flood thematic layers representing topographic, geomorphic, climatic, and hydrological conditions were prepared, normalized, and combined through a GIS- based analytic hierarchy process (AHP) technique to obtain flash flood hazard zones (FFHs). This method successfully presented a satisfactory output map that revealed six zones of flood risk, and areas of extreme hazard covered about 13% of the entire basin. Landsat 8 band composite 7, 5, and 3 and field data validated the FFHs. This map considered a key requirement for sustaining safe settlements downstream of Wadi Hali. Overall, the integration of remote sensing and GIS techniques revealed significant areas of flash flood zones in an arid region.
Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia
Saad S. Alarifi (author) / Mohamed Abdelkareem (author) / Fathy Abdalla (author) / Mislat Alotaibi (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Mapping Paleohydrologic Features in the Arid Areas of Saudi Arabia Using Remote-Sensing Data
DOAJ | 2020
|