A platform for research: civil engineering, architecture and urbanism
A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns
Economic dispatch (ED) problems, especially in multi-area power networks, have been challenging concerns for power system operators for several decades. In this paper, we introduce a novel approach for solving the multiobjective multi-area dynamic ED (MADED) problem in the presence of practical constraints such as valve-point effect (VPE), prohibited operating zone (POZ), multi-fuel operation (MFO), and ramp rate (RR) limitations. Different objective functions including energy not supplied (ENS), generation costs, and emissions are investigated. The reliability objective, which has been less studied in economic dispatch area, distinguishes the proposed study from other studies. A compromise has been made from economic and reliability points of view. The MADED problem in the power system is inherently a complex and nonlinear problem, considering the operational constraint increments and the intricacy of the problem. Hence, the modified grasshopper optimization (MGO) algorithm based on a chaos mechanism is presented to prevent being trapped in local optima. The proposed method is tested on two systems including a 10 unit, 3-zone test system and a 40-unit 3-zone test system, and then, the outcomes are compared with those of other evolutionary techniques such as gray wolf optimization (GWO) and modified honey bee mating optimization (MHBMO). The simulation results demonstrate that the suggested strategy is successful in resolving both single-objective and multiobjective MADED problems.
A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns
Economic dispatch (ED) problems, especially in multi-area power networks, have been challenging concerns for power system operators for several decades. In this paper, we introduce a novel approach for solving the multiobjective multi-area dynamic ED (MADED) problem in the presence of practical constraints such as valve-point effect (VPE), prohibited operating zone (POZ), multi-fuel operation (MFO), and ramp rate (RR) limitations. Different objective functions including energy not supplied (ENS), generation costs, and emissions are investigated. The reliability objective, which has been less studied in economic dispatch area, distinguishes the proposed study from other studies. A compromise has been made from economic and reliability points of view. The MADED problem in the power system is inherently a complex and nonlinear problem, considering the operational constraint increments and the intricacy of the problem. Hence, the modified grasshopper optimization (MGO) algorithm based on a chaos mechanism is presented to prevent being trapped in local optima. The proposed method is tested on two systems including a 10 unit, 3-zone test system and a 40-unit 3-zone test system, and then, the outcomes are compared with those of other evolutionary techniques such as gray wolf optimization (GWO) and modified honey bee mating optimization (MHBMO). The simulation results demonstrate that the suggested strategy is successful in resolving both single-objective and multiobjective MADED problems.
A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns
Hossein Lotfi (author)
2022
Article (Journal)
Electronic Resource
Unknown
dynamic economic dispatch (DED) , multi-area dynamic economic dispatch (MADED) , energy not supplied (ENS) , modified grasshopper optimization (MGO) , multiobjective problem , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Combined economic-emission dispatch problem: Dynamic neural networks solution approach
American Institute of Physics | 2017
|