A platform for research: civil engineering, architecture and urbanism
Failure envelope considering the ultimate tensile capacity of suction caissons in sand
Little analytical work has been done to elucidate the ultimate capacity of suction caissons under vertical tensile (V), lateral (H), and moment (M) loads in soils. In this paper, in order to reveal the effect of vertical tensile, lateral, and moment loads on the ultimate capacity of suction caissons in sand, an analytical investigation was made using a traditional bearing capacity theory. Taking account of the vertical equilibrium of an annular element of a skirt, through the vertical tractions inside and outside the skirt of a suction caisson when a vertical tensile load is applied, the vertical displacement of the soils adjacent to the skirt of the suction caisson was presented. The most appropriate bearing capacity equation for predicting the experimental results was shown for suction caissons having an embedment larger than a diameter in sand. For the deformation-load responses of suction caissons with various embedment ratios in sand, subjected to inclined tensile loads, there was a good agreement between the results obtained from laboratory tests and those predicted by the present method. The failure surfaces, considering the ultimate tensile capacity in the H-M, H-V, and M−V planes, and in the H-M−V space, for suction caissons in sand, were presented.
Failure envelope considering the ultimate tensile capacity of suction caissons in sand
Little analytical work has been done to elucidate the ultimate capacity of suction caissons under vertical tensile (V), lateral (H), and moment (M) loads in soils. In this paper, in order to reveal the effect of vertical tensile, lateral, and moment loads on the ultimate capacity of suction caissons in sand, an analytical investigation was made using a traditional bearing capacity theory. Taking account of the vertical equilibrium of an annular element of a skirt, through the vertical tractions inside and outside the skirt of a suction caisson when a vertical tensile load is applied, the vertical displacement of the soils adjacent to the skirt of the suction caisson was presented. The most appropriate bearing capacity equation for predicting the experimental results was shown for suction caissons having an embedment larger than a diameter in sand. For the deformation-load responses of suction caissons with various embedment ratios in sand, subjected to inclined tensile loads, there was a good agreement between the results obtained from laboratory tests and those predicted by the present method. The failure surfaces, considering the ultimate tensile capacity in the H-M, H-V, and M−V planes, and in the H-M−V space, for suction caissons in sand, were presented.
Failure envelope considering the ultimate tensile capacity of suction caissons in sand
Hiroyoshi Hirai (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Taylor & Francis Verlag | 2023
|The tensile capacity of suction caissons in sand under rapid loading
British Library Conference Proceedings | 2005
|Taylor & Francis Verlag | 2019
|Extraction of suction caissons in sand
British Library Online Contents | 2014
|Plastic Flow of Sand and Pullout Capacity of Suction Caissons
British Library Online Contents | 2015
|