A platform for research: civil engineering, architecture and urbanism
Probability distributions of daily rainfall extremes in Lazio and Sicily, Italy, and design rainfall inferences
Study region: We investigate samples from two Italian regions, i.e. Lazio and Sicily, located in central and south Italy, respectively, and characterized by two diverse climates. Study focus: In engineering practice, the study of maxima daily rainfall values is commonly dealt with light-tailed probability distribution functions, such as the Gumbel. The choice of a distribution rather than another may cause estimation errors of rainfall values associated to specific return periods. Recently, several studies demonstrate that heavy-tailed distributions are preferable for extreme events modelling. Here, we opt for six theoretical probability distribution functions and evaluate their performance in fitting extreme precipitation samples. We select the samples with two common methods, i.e. the Peak-Over-Threshold and the Annual Maxima. We assess the best fitting distribution to the empirical samples of extreme values through the Ratio Mean Square Error Method and the Kolmogorov-Smirnov test. New hydrological insights for the region: The assessment of the best fitting distribution to daily rainfall of the two different areas investigated here leads to interesting remarks. Despite the diversity of their climate, results suggest that heavy-tailed distributions describe more accurately empirical data rather than light-tailed ones. Therefore, extreme events may have been largely underestimated in the past in both areas. The proposed investigation can prompt the choice of the best fitting probability distribution to evaluate the design hydrological quantities supporting common engineering practice.
Probability distributions of daily rainfall extremes in Lazio and Sicily, Italy, and design rainfall inferences
Study region: We investigate samples from two Italian regions, i.e. Lazio and Sicily, located in central and south Italy, respectively, and characterized by two diverse climates. Study focus: In engineering practice, the study of maxima daily rainfall values is commonly dealt with light-tailed probability distribution functions, such as the Gumbel. The choice of a distribution rather than another may cause estimation errors of rainfall values associated to specific return periods. Recently, several studies demonstrate that heavy-tailed distributions are preferable for extreme events modelling. Here, we opt for six theoretical probability distribution functions and evaluate their performance in fitting extreme precipitation samples. We select the samples with two common methods, i.e. the Peak-Over-Threshold and the Annual Maxima. We assess the best fitting distribution to the empirical samples of extreme values through the Ratio Mean Square Error Method and the Kolmogorov-Smirnov test. New hydrological insights for the region: The assessment of the best fitting distribution to daily rainfall of the two different areas investigated here leads to interesting remarks. Despite the diversity of their climate, results suggest that heavy-tailed distributions describe more accurately empirical data rather than light-tailed ones. Therefore, extreme events may have been largely underestimated in the past in both areas. The proposed investigation can prompt the choice of the best fitting probability distribution to evaluate the design hydrological quantities supporting common engineering practice.
Probability distributions of daily rainfall extremes in Lazio and Sicily, Italy, and design rainfall inferences
Benedetta Moccia (author) / Claudio Mineo (author) / Elena Ridolfi (author) / Fabio Russo (author) / Francesco Napolitano (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Weighting of Field Monitoring Data with Probability Distributions of Daily Rainfall
British Library Conference Proceedings | 2008
|Entropy based derivation of probability distributions: A case study to daily rainfall
British Library Online Contents | 2012
|A metastatistical approach to rainfall extremes
British Library Online Contents | 2015
|