A platform for research: civil engineering, architecture and urbanism
Removal of Hydrogen Peroxide Residuals and By-Product Bromate from Advanced Oxidation Processes by Granular Activated Carbon
During drinking water treatment, advanced oxidation process (AOP) with O3 and H2O2 may result in by-products, residual H2O2 and BrO3−. The water containing H2O2 and BrO3− often flows into subsequent granular activated carbon (GAC) filters. A concentrated H2O2 solution can be used as GAC modification reagent at 60 °C to improve its adsorption ability. However, whether low concentrations of H2O2 residuals from AOP can modify GAC, and the impact of H2O2 residuals on BrO3− removal by the subsequent GAC filter at ambient temperature, is unknown. This study evaluated the modification of GAC surface functional groups by residual H2O2 and its effect on BrO3− removal by GAC. Results showed that both H2O2 and BrO3− were effectively removed by virgin GAC, while pre-loaded and regenerated GACs removed H2O2 but not BrO3− anymore. At the ambient temperature 150 µmol/L H2O2 residuals consumed large amounts of functional groups, which resulted in the decrease of BrO3− removal by virgin GAC in the presence of H2O2 residuals. Redox reactions between BrO3− and surface functional groups played a dominant role in BrO3− removal by GAC, and only a small amount of BrO3− was removed by GAC adsorption. The higher the pH, the less BrO3− removal and the more H2O2 removal was observed.
Removal of Hydrogen Peroxide Residuals and By-Product Bromate from Advanced Oxidation Processes by Granular Activated Carbon
During drinking water treatment, advanced oxidation process (AOP) with O3 and H2O2 may result in by-products, residual H2O2 and BrO3−. The water containing H2O2 and BrO3− often flows into subsequent granular activated carbon (GAC) filters. A concentrated H2O2 solution can be used as GAC modification reagent at 60 °C to improve its adsorption ability. However, whether low concentrations of H2O2 residuals from AOP can modify GAC, and the impact of H2O2 residuals on BrO3− removal by the subsequent GAC filter at ambient temperature, is unknown. This study evaluated the modification of GAC surface functional groups by residual H2O2 and its effect on BrO3− removal by GAC. Results showed that both H2O2 and BrO3− were effectively removed by virgin GAC, while pre-loaded and regenerated GACs removed H2O2 but not BrO3− anymore. At the ambient temperature 150 µmol/L H2O2 residuals consumed large amounts of functional groups, which resulted in the decrease of BrO3− removal by virgin GAC in the presence of H2O2 residuals. Redox reactions between BrO3− and surface functional groups played a dominant role in BrO3− removal by GAC, and only a small amount of BrO3− was removed by GAC adsorption. The higher the pH, the less BrO3− removal and the more H2O2 removal was observed.
Removal of Hydrogen Peroxide Residuals and By-Product Bromate from Advanced Oxidation Processes by Granular Activated Carbon
Feifei Wang (author) / Lu Zhang (author) / Liangfu Wei (author) / Jan Peter van der Hoek (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
The Use of Granular Activated Carbon in the Removal of Bromate
British Library Conference Proceedings | 1995
|Bromate formation in advanced oxidation processes
Wiley | 1996
|Removal of bromate from water using modified activated carbon
Online Contents | 2012
|Impacts and Removal of Hydrogen Peroxide Residuals in Biologically Active Filters
British Library Conference Proceedings | 1997
|Treatment of Gasoline Residuals by Granular Activated Carbon Based Biological Filtration
Online Contents | 1995
|