A platform for research: civil engineering, architecture and urbanism
Partial Organic Substitution Fertilization Improves Soil Fertility While Reducing N Mineralization in Rubber Plantations
Overuse of chemical nitrogen (N) fertilizers leads to N leaching and soil degradation. Replacing chemical N fertilizers with organic fertilizers can enhance soil nutrition, reduce N loss, and improve soil productivity. However, the effects of combining organic and chemical fertilizers on soil N components and N transformation remain unclear. A 12-year field study included four treatments: no fertilizer (CK), chemical fertilizer alone (CF), 50% chemical N fertilizer combined with co-composted organic fertilizer (CFM), and composted (CFMC) organic fertilizer. The results showed that CFM and CFMC significantly enhanced SOC, TN, LFON, DON, NH4+-N, and MIN levels compared to CF. The CFM and CFMC treatments enhanced the soil N supply capacity and N pool stability by increasing the N mineralization potential (N0) and decreasing the N0/TN ratio. The CFM and CFMC treatments decreased net N ammonification rates by 108.03%–139.83% and 0.44%–64.91% and net mineralization rates by 60.60%–66.30% and 1.74%–30.38%, respectively. Changes in N transformation have been attributed to increased soil pH, enzyme activity, and substrate availability. These findings suggest that partial organic fertilizer substitution, particularly with co-composted organic fertilizers, is a viable strategy for enhancing soil fertility, improving soil N supply and stability, and reducing N loss in rubber plantations.
Partial Organic Substitution Fertilization Improves Soil Fertility While Reducing N Mineralization in Rubber Plantations
Overuse of chemical nitrogen (N) fertilizers leads to N leaching and soil degradation. Replacing chemical N fertilizers with organic fertilizers can enhance soil nutrition, reduce N loss, and improve soil productivity. However, the effects of combining organic and chemical fertilizers on soil N components and N transformation remain unclear. A 12-year field study included four treatments: no fertilizer (CK), chemical fertilizer alone (CF), 50% chemical N fertilizer combined with co-composted organic fertilizer (CFM), and composted (CFMC) organic fertilizer. The results showed that CFM and CFMC significantly enhanced SOC, TN, LFON, DON, NH4+-N, and MIN levels compared to CF. The CFM and CFMC treatments enhanced the soil N supply capacity and N pool stability by increasing the N mineralization potential (N0) and decreasing the N0/TN ratio. The CFM and CFMC treatments decreased net N ammonification rates by 108.03%–139.83% and 0.44%–64.91% and net mineralization rates by 60.60%–66.30% and 1.74%–30.38%, respectively. Changes in N transformation have been attributed to increased soil pH, enzyme activity, and substrate availability. These findings suggest that partial organic fertilizer substitution, particularly with co-composted organic fertilizers, is a viable strategy for enhancing soil fertility, improving soil N supply and stability, and reducing N loss in rubber plantations.
Partial Organic Substitution Fertilization Improves Soil Fertility While Reducing N Mineralization in Rubber Plantations
Wenxian Xu (author) / Qiu Yang (author) / Wenjie Liu (author) / Yamin Jiang (author) / Xinwei Guo (author) / Rui Sun (author) / Wei Luo (author) / Mengyang Fang (author) / Zhixiang Wu (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Fertilization and Residue Management Improved Soil Quality of Eucalyptus Plantations
DOAJ | 2023
|DOAJ | 2015
|DOAJ | 2023
|