A platform for research: civil engineering, architecture and urbanism
Comparison of Precipitation and Streamflow Correcting for Ensemble Streamflow Forecasts
Meteorological centers constantly make efforts to provide more skillful seasonal climate forecast, which has the potential to improve streamflow forecasts. A common approach is to bias-correct the general circulation model (GCM) forecasts prior to generating the streamflow forecasts. Less attention has been paid to the issue of bias-corrected streamflow forecasts that were generated by GCM forecasts. This study compares the effect of bias-corrected GCM forecasts and bias-corrected streamflow outputs on the improvement of streamflow forecast efficiency. Based on the Upper Hanjiang River Basin (UHRB), the authors compare three forecasting scenarios: original forecasts, bias-corrected precipitation forecasts and bias-corrected streamflow forecasts. We apply the quantile mapping method to bias-correct precipitation forecasts and the linear scaling method to bias-correct the original streamflow forecasts. A semi-distributed hydrological model, namely the Tsinghua Representative Elementary Watershed (THREW) model, is employed to transform precipitation into streamflow. The effects of bias-corrected precipitation and bias-corrected streamflow are assessed in terms of accuracy, reliability, sharpness and overall performance. The results show that both bias-corrected precipitation and bias-corrected streamflow can considerably increase the overall forecast skill in comparison to the original streamflow forecasts. Bias-corrected precipitation contributes mainly to improving the forecast reliability and sharpness, while bias-corrected streamflow is successful in increasing the forecast accuracy and overall performance of the ensemble forecasts.
Comparison of Precipitation and Streamflow Correcting for Ensemble Streamflow Forecasts
Meteorological centers constantly make efforts to provide more skillful seasonal climate forecast, which has the potential to improve streamflow forecasts. A common approach is to bias-correct the general circulation model (GCM) forecasts prior to generating the streamflow forecasts. Less attention has been paid to the issue of bias-corrected streamflow forecasts that were generated by GCM forecasts. This study compares the effect of bias-corrected GCM forecasts and bias-corrected streamflow outputs on the improvement of streamflow forecast efficiency. Based on the Upper Hanjiang River Basin (UHRB), the authors compare three forecasting scenarios: original forecasts, bias-corrected precipitation forecasts and bias-corrected streamflow forecasts. We apply the quantile mapping method to bias-correct precipitation forecasts and the linear scaling method to bias-correct the original streamflow forecasts. A semi-distributed hydrological model, namely the Tsinghua Representative Elementary Watershed (THREW) model, is employed to transform precipitation into streamflow. The effects of bias-corrected precipitation and bias-corrected streamflow are assessed in terms of accuracy, reliability, sharpness and overall performance. The results show that both bias-corrected precipitation and bias-corrected streamflow can considerably increase the overall forecast skill in comparison to the original streamflow forecasts. Bias-corrected precipitation contributes mainly to improving the forecast reliability and sharpness, while bias-corrected streamflow is successful in increasing the forecast accuracy and overall performance of the ensemble forecasts.
Comparison of Precipitation and Streamflow Correcting for Ensemble Streamflow Forecasts
Yilu Li (author) / Yunzhong Jiang (author) / Xiaohui Lei (author) / Fuqiang Tian (author) / Hao Duan (author) / Hui Lu (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Ensemble Combination of Seasonal Streamflow Forecasts
Online Contents | 2016
|Ensemble Combination of Seasonal Streamflow Forecasts
ASCE | 2015
|Improving Water Supply Forecasts in Korea with Ensemble Streamflow Prediction
Online Contents | 2001
|Stratification of NWP Forecasts for Medium-Range Ensemble Streamflow Forecasting
Online Contents | 2015
|