A platform for research: civil engineering, architecture and urbanism
Deriving Six Components of Reynolds Stress Tensor from Single-ADCP Data
Acoustic Doppler current profilers (ADCP) are widely used in geophysical studies for mean velocity profiling and calculation of energy dissipation rate. On the other hand, the estimation of turbulent stresses from ADCP data still remains challenging. With the four-beam version of the device, only two shear stresses are derivable; and even for the five-beam version (Janus+), the calculation of the full Reynolds stress tensor is problematic currently. The known attempts to overcome the problem are based on the “coupled ADCP” experimental setup and include some hard restrictions, not to mention the essential complexity of performing experiments. In this paper, a new method is presented which allows to derive the stresses from single-ADCP data. Its essence is that interbeam correlations are taken into account as producing the missing equations for stresses. This method is applicable only for the depth range, for which the distance between the beams is comparable to the scales, where the turbulence is locally isotropic and homogeneous. The validation of this method was carried out for convectively-mixed layer in a boreal ice-covered lake. The results of computations turned out to be physically sustainable in the sense that realizability conditions were basically fulfilled. The additional verification was carried out by comparing the results, obtained by the new method and “coupled ADCPs” one.
Deriving Six Components of Reynolds Stress Tensor from Single-ADCP Data
Acoustic Doppler current profilers (ADCP) are widely used in geophysical studies for mean velocity profiling and calculation of energy dissipation rate. On the other hand, the estimation of turbulent stresses from ADCP data still remains challenging. With the four-beam version of the device, only two shear stresses are derivable; and even for the five-beam version (Janus+), the calculation of the full Reynolds stress tensor is problematic currently. The known attempts to overcome the problem are based on the “coupled ADCP” experimental setup and include some hard restrictions, not to mention the essential complexity of performing experiments. In this paper, a new method is presented which allows to derive the stresses from single-ADCP data. Its essence is that interbeam correlations are taken into account as producing the missing equations for stresses. This method is applicable only for the depth range, for which the distance between the beams is comparable to the scales, where the turbulence is locally isotropic and homogeneous. The validation of this method was carried out for convectively-mixed layer in a boreal ice-covered lake. The results of computations turned out to be physically sustainable in the sense that realizability conditions were basically fulfilled. The additional verification was carried out by comparing the results, obtained by the new method and “coupled ADCPs” one.
Deriving Six Components of Reynolds Stress Tensor from Single-ADCP Data
Sergey Bogdanov (author) / Roman Zdorovennov (author) / Nikolay Palshin (author) / Galina Zdorovennova (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
3.3. Deriving the Electrostatic Maxwell Stress Tensor
Trans Tech Publications | 2008
Sedimentation Estimation from ADCP Measurements
British Library Online Contents | 2003
British Library Online Contents | 1998
|Aquatic Habitat Bottom Classification Using ADCP
British Library Online Contents | 2010
|ADcp river discharge measurement: sharing experience
Online Contents | 2007
|