A platform for research: civil engineering, architecture and urbanism
Optimal Modeling and Feasibility Analysis of Grid-Interfaced Solar PV/Wind/Pumped Hydro Energy Storage Based Hybrid System
Access to inexpensive, clean energy is a key factor in a country’s ability to grow sustainably The production of electricity using fossil fuels contributes significantly to global warming and is becoming less and less profitable nowadays. This work therefore proposes to study the different possible scenarios for the replacement of light fuel oil (LFO) thermal power plants connected to the electrical network in northern Cameroon by renewable energy plants. Several scenarios such as the combination of solar photovoltaic (PV) with a pumped hydro storage system (PHSS), Wind and PHSS and PV-Wind-PHSS have been studied. The selected scenarios are evaluated based on two factors such as the system’s total cost (TC) and the loss of load probability (LOLP). To achieve the results, metaheuristics such the non-dominated sorting whale optimization algorithm (NSWOA) and non-dominated sorting genetic algorithm-II (NSGA-II) have been applied under MATLAB software. The optimal sizing of the components was done using hourly meteorological data and the hourly power generated by the thermal power plants connected to the electrical grid. Both algorithms provided satisfactory results. However, the total cost in the PV-PHSS, Wind-PHSS, and PV-Wind-PHSS scenarios with NSWOA is, respectively, 1%, 6%, and 0.2% lower than with NSGA-II. According to NSWOA results, the total cost for the PV-Wind-PHSS scenario at LOLP 0% is 4.6% and 17% less than the Wind-PHS and PV-PHSS scenarios, respectively. The profitability study of all three scenarios showed that the project is profitable regardless of the scenario considered.
Optimal Modeling and Feasibility Analysis of Grid-Interfaced Solar PV/Wind/Pumped Hydro Energy Storage Based Hybrid System
Access to inexpensive, clean energy is a key factor in a country’s ability to grow sustainably The production of electricity using fossil fuels contributes significantly to global warming and is becoming less and less profitable nowadays. This work therefore proposes to study the different possible scenarios for the replacement of light fuel oil (LFO) thermal power plants connected to the electrical network in northern Cameroon by renewable energy plants. Several scenarios such as the combination of solar photovoltaic (PV) with a pumped hydro storage system (PHSS), Wind and PHSS and PV-Wind-PHSS have been studied. The selected scenarios are evaluated based on two factors such as the system’s total cost (TC) and the loss of load probability (LOLP). To achieve the results, metaheuristics such the non-dominated sorting whale optimization algorithm (NSWOA) and non-dominated sorting genetic algorithm-II (NSGA-II) have been applied under MATLAB software. The optimal sizing of the components was done using hourly meteorological data and the hourly power generated by the thermal power plants connected to the electrical grid. Both algorithms provided satisfactory results. However, the total cost in the PV-PHSS, Wind-PHSS, and PV-Wind-PHSS scenarios with NSWOA is, respectively, 1%, 6%, and 0.2% lower than with NSGA-II. According to NSWOA results, the total cost for the PV-Wind-PHSS scenario at LOLP 0% is 4.6% and 17% less than the Wind-PHS and PV-PHSS scenarios, respectively. The profitability study of all three scenarios showed that the project is profitable regardless of the scenario considered.
Optimal Modeling and Feasibility Analysis of Grid-Interfaced Solar PV/Wind/Pumped Hydro Energy Storage Based Hybrid System
Isaac Amoussou (author) / Emmanuel Tanyi (author) / Ahmed Ali (author) / Takele Ferede Agajie (author) / Baseem Khan (author) / Julien Brito Ballester (author) / Wirnkar Basil Nsanyuy (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Modeling and Simulation of Utility Interfaced PV/Hydro Hybrid Electric Power System
BASE | 2014
|Grid-scale pumped hydro energy storage for the low countries
HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2023
|American Institute of Physics | 2018
|