A platform for research: civil engineering, architecture and urbanism
Asthma exacerbation due to climate change-induced wildfire smoke in the Western US
Climate change and human activities have drastically altered the natural wildfire balance in the Western US and increased population health risks due to exposure to pollutants from fire smoke. Using dynamically downscaled climate model projections, we estimated additional asthma emergency room visits and hospitalizations due to exposure to smoke fine particulate matter (PM _2.5 ) in the Western US in the 2050s. Isolating the amount of PM _2.5 from wildfire smoke is both difficult to estimate and, thus, utilized by relatively few studies. In this study, we use a sophisticated modeling approach to estimate future increase in wildfire smoke exposure over the reference period (2003–2010) and subsequent health care burden due to asthma exacerbation. Average increases in smoke PM _2.5 during future fire season ranged from 0.05 to 9.5 µ g m ^−3 with the highest increases seen in Idaho, Montana, and Oregon. Using the Integrated Climate and Land-Use Scenarios (ICLUS) A2 scenario, we estimated the smoke-related asthma events could increase at a rate of 15.1 visits per 10 000 persons in the Western US, with the highest rates of increased asthma (25.7–41.9 per 10 000) in Idaho, Montana, Oregon, and Washington. Finally, we estimated healthcare costs of smoke-induced asthma exacerbation to be over $1.5 billion during a single future fire season. Here we show the potential future health impact of climate-induced wildfire activity, which may serve as a key tool in future climate change mitigation and adaptation planning.
Asthma exacerbation due to climate change-induced wildfire smoke in the Western US
Climate change and human activities have drastically altered the natural wildfire balance in the Western US and increased population health risks due to exposure to pollutants from fire smoke. Using dynamically downscaled climate model projections, we estimated additional asthma emergency room visits and hospitalizations due to exposure to smoke fine particulate matter (PM _2.5 ) in the Western US in the 2050s. Isolating the amount of PM _2.5 from wildfire smoke is both difficult to estimate and, thus, utilized by relatively few studies. In this study, we use a sophisticated modeling approach to estimate future increase in wildfire smoke exposure over the reference period (2003–2010) and subsequent health care burden due to asthma exacerbation. Average increases in smoke PM _2.5 during future fire season ranged from 0.05 to 9.5 µ g m ^−3 with the highest increases seen in Idaho, Montana, and Oregon. Using the Integrated Climate and Land-Use Scenarios (ICLUS) A2 scenario, we estimated the smoke-related asthma events could increase at a rate of 15.1 visits per 10 000 persons in the Western US, with the highest rates of increased asthma (25.7–41.9 per 10 000) in Idaho, Montana, Oregon, and Washington. Finally, we estimated healthcare costs of smoke-induced asthma exacerbation to be over $1.5 billion during a single future fire season. Here we show the potential future health impact of climate-induced wildfire activity, which may serve as a key tool in future climate change mitigation and adaptation planning.
Asthma exacerbation due to climate change-induced wildfire smoke in the Western US
Jennifer D Stowell (author) / Cheng-En Yang (author) / Joshua S Fu (author) / Noah C Scovronick (author) / Matthew J Strickland (author) / Yang Liu (author)
2021
Article (Journal)
Electronic Resource
Unknown
Wildfire , climate change , asthma , respiratory , PM2.5 , smoke , Environmental technology. Sanitary engineering , TD1-1066 , Environmental sciences , GE1-350 , Science , Q , Physics , QC1-999
Metadata by DOAJ is licensed under CC BY-SA 1.0
Future respiratory hospital admissions from wildfire smoke under climate change in the Western US
DOAJ | 2016
|Hourly differences in air pollution on the risk of asthma exacerbation
Online Contents | 2015
|