A platform for research: civil engineering, architecture and urbanism
Combined Analysis of Net Groundwater Recharge Using Water Budget and Climate Change Scenarios
Estimating the groundwater recharge rate is essential in all groundwater-related fields, including groundwater development, use, management, modeling, and contamination analysis. In this study, we proposed a combined method of water budget and climate change scenario for estimating the net groundwater recharge rate in the Nakdong River watershed (NRW), South Korea. For the climate change scenario method, the representative concentration pathway (RCP) 4.5 and 8.5 climate scenarios were adopted. First, using the water budget method from 2009 to 2018, the net groundwater recharge rate (NGRR) of 12.15–18.10% relative to annual precipitation (AP) was obtained, subtracting direct runoff (DR) of 21.18–25.32% relative to AP, evapotranspiration (EP) of 40.53–52.29% relative to AP, and baseflow of 12.42–17.84% relative to AP, from the AP (865–1494 mm). The average annual NGRR of the NRW was 200 mm (15.59%). Second, the mean NGRRs from 2009 to 2100 under the RCP 4.5 and RCP 8.5 scenarios were anticipated as 8.73% and 7.63%, respectively. The similarity between the water budget and climate change scenarios was confirmed using data from 2009 and 2018. According to the simple climate change scenario, it is predicted that annual precipitation will increase over the years while the groundwater level and net groundwater recharge rate will decrease. Nonetheless, the estimated NGRR by the water budget method in this study possesses uncertainty due to using potential ET instead of actual ET which should be estimated by considering soil water content.
Combined Analysis of Net Groundwater Recharge Using Water Budget and Climate Change Scenarios
Estimating the groundwater recharge rate is essential in all groundwater-related fields, including groundwater development, use, management, modeling, and contamination analysis. In this study, we proposed a combined method of water budget and climate change scenario for estimating the net groundwater recharge rate in the Nakdong River watershed (NRW), South Korea. For the climate change scenario method, the representative concentration pathway (RCP) 4.5 and 8.5 climate scenarios were adopted. First, using the water budget method from 2009 to 2018, the net groundwater recharge rate (NGRR) of 12.15–18.10% relative to annual precipitation (AP) was obtained, subtracting direct runoff (DR) of 21.18–25.32% relative to AP, evapotranspiration (EP) of 40.53–52.29% relative to AP, and baseflow of 12.42–17.84% relative to AP, from the AP (865–1494 mm). The average annual NGRR of the NRW was 200 mm (15.59%). Second, the mean NGRRs from 2009 to 2100 under the RCP 4.5 and RCP 8.5 scenarios were anticipated as 8.73% and 7.63%, respectively. The similarity between the water budget and climate change scenarios was confirmed using data from 2009 and 2018. According to the simple climate change scenario, it is predicted that annual precipitation will increase over the years while the groundwater level and net groundwater recharge rate will decrease. Nonetheless, the estimated NGRR by the water budget method in this study possesses uncertainty due to using potential ET instead of actual ET which should be estimated by considering soil water content.
Combined Analysis of Net Groundwater Recharge Using Water Budget and Climate Change Scenarios
Sul-Min Yun (author) / Hang-Tak Jeon (author) / Jae-Yeol Cheong (author) / Jinsoo Kim (author) / Se-Yeong Hamm (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Climate Change Impact on Surface Water and Groundwater Recharge in Northern Thailand
DOAJ | 2020
|Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan
DOAJ | 2021
|How Complex Groundwater Flow Systems Respond to Climate Change Induced Recharge Reduction?
DOAJ | 2022
|