A platform for research: civil engineering, architecture and urbanism
The effect of macro polymer fibres length and content on the fibre reinforced concrete
The paper presents studies of a ready-mix concrete containing polymer fibres of three different lengths: 24, 38 and 54 mm. The performed tests allowed to determine the effect of fibre volume fraction and length on the concrete strength. The basic parameters of concrete mixture (consistency, air content and bulk density) were identified. Fibre reinforced concrete belongs to a group of composite materials. The polymer fibres are applied in the concrete in structures where the reduction of shrinkage cracking as well as corrosion resistance and fire temperatures are required. It is widely known, that the cracking behaviour of concrete structures depends on flexural tensile strength of concrete. The addition of fibres significantly improves the tensile strength. The experimental study, including axial compressive strength and center-point loading flexural tensile strength, was carried out. The scope of the research was also expanded by the usage of a scanning microscope. The test results showed the effect of fibre length and fibre combinations on mechanical properties of concrete. The effect of the research is to formulate guidelines due to the quantity of macro polymer fibres. In general, appropriate fibre content brings a beneficial effect e.g. improves better workability of a concrete mixture.
The effect of macro polymer fibres length and content on the fibre reinforced concrete
The paper presents studies of a ready-mix concrete containing polymer fibres of three different lengths: 24, 38 and 54 mm. The performed tests allowed to determine the effect of fibre volume fraction and length on the concrete strength. The basic parameters of concrete mixture (consistency, air content and bulk density) were identified. Fibre reinforced concrete belongs to a group of composite materials. The polymer fibres are applied in the concrete in structures where the reduction of shrinkage cracking as well as corrosion resistance and fire temperatures are required. It is widely known, that the cracking behaviour of concrete structures depends on flexural tensile strength of concrete. The addition of fibres significantly improves the tensile strength. The experimental study, including axial compressive strength and center-point loading flexural tensile strength, was carried out. The scope of the research was also expanded by the usage of a scanning microscope. The test results showed the effect of fibre length and fibre combinations on mechanical properties of concrete. The effect of the research is to formulate guidelines due to the quantity of macro polymer fibres. In general, appropriate fibre content brings a beneficial effect e.g. improves better workability of a concrete mixture.
The effect of macro polymer fibres length and content on the fibre reinforced concrete
Mariak Aleksandra (author) / Kurpińska Marzena (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Macro-fibre-reinforced concrete slab track
Online Contents | 2009
|Macro-fibre-reinforced concrete slab track
British Library Online Contents | 2009
|FIBRES - Fibre-reinforced concrete creep tests
Online Contents | 2008
|