A platform for research: civil engineering, architecture and urbanism
Temperature Impact on Reverse Osmosis Permeate Flux in the Remediation of Hexavalent Chromium
Reverse osmosis technique was applied in removing hexavalent chromium ions from artificial wastewater. Different operating conditions were studied to monitor the separation process using commercial Reverse Osmosis BW30XFR membrane. Different concentrations of hexavalent chromium; 5, 30, and 100 ppm were tested. Samples were subjected to incrementally increasing operating pressure; 10, 30, and 45 bar and flow rates; 2.2, 3.4, and 4.5 L/min under various temperatures; 25, 35, 45, and 55 °C. Collected permeate and concentrations were measured after each experiment using a UV spectrophotometer. Results obtained presented a higher rejection percentage at lower feed concentrations with a value up to 99.8% for 5 ppm in comparison to 94.3% for 30 ppm and 77.2% for 100 ppm concentration due to concentration polarization; however, it showed no effect of increasing operating flow rates. Moreover, the increase in feed temperature from 25 to 55 °C had positively increased permeate flux to more than 300 times. The permeate flux at 25 °C is recorded for all tested samples in the range of 30 to 158 kg/h·m2, this range has risen at 55 °C under the same conditions to the range of 70 to 226 kg/h·m2, indicating alteration within the membrane pore size due to temperature increase and high applied pressure concluding high sensitivity of polymeric membranes towards changing permeate flow rate with increasing temperatures.
Temperature Impact on Reverse Osmosis Permeate Flux in the Remediation of Hexavalent Chromium
Reverse osmosis technique was applied in removing hexavalent chromium ions from artificial wastewater. Different operating conditions were studied to monitor the separation process using commercial Reverse Osmosis BW30XFR membrane. Different concentrations of hexavalent chromium; 5, 30, and 100 ppm were tested. Samples were subjected to incrementally increasing operating pressure; 10, 30, and 45 bar and flow rates; 2.2, 3.4, and 4.5 L/min under various temperatures; 25, 35, 45, and 55 °C. Collected permeate and concentrations were measured after each experiment using a UV spectrophotometer. Results obtained presented a higher rejection percentage at lower feed concentrations with a value up to 99.8% for 5 ppm in comparison to 94.3% for 30 ppm and 77.2% for 100 ppm concentration due to concentration polarization; however, it showed no effect of increasing operating flow rates. Moreover, the increase in feed temperature from 25 to 55 °C had positively increased permeate flux to more than 300 times. The permeate flux at 25 °C is recorded for all tested samples in the range of 30 to 158 kg/h·m2, this range has risen at 55 °C under the same conditions to the range of 70 to 226 kg/h·m2, indicating alteration within the membrane pore size due to temperature increase and high applied pressure concluding high sensitivity of polymeric membranes towards changing permeate flow rate with increasing temperatures.
Temperature Impact on Reverse Osmosis Permeate Flux in the Remediation of Hexavalent Chromium
Ihab Shigidi (author) / Ali E. Anqi (author) / Abubakar Elkhaleefa (author) / Azam Mohamed (author) / Ismat H. Ali (author) / Eid I. Brima (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Corrosion Behavior of Carbon Steel in Reverse Osmosis Permeate of Seawater
British Library Online Contents | 2012
|Remediation processes of hexavalent chromium from groundwater: a short review
DOAJ | 2023
|Gemini Surfactant-Modified Activated Carbon for Remediation of Hexavalent Chromium from Water
DOAJ | 2018
|