A platform for research: civil engineering, architecture and urbanism
Immune Evolution Particle Filter for Soil Moisture Data Assimilation
Data assimilation (DA) has been widely used in land surface models (LSM) to improve model state estimates. Among various DA methods, the particle filter (PF) with Markov chain Monte Carlo (MCMC) has become increasingly popular for estimating the states of the nonlinear and non-Gaussian LSMs. However, the standard PF always suffers from the particle impoverishment problem, characterized by loss of particle diversity. To solve this problem, an immune evolution particle filter with MCMC simulation inspired by the biological immune system, entitled IEPFM, is proposed for DA in this paper. The merit of this approach is in imitating the antibody diversity preservation mechanism to further improve particle diversity, thus increasing the accuracy of estimates. Furthermore, the immune memory function refers to promise particle evolution process towards optimal estimates. Effectiveness of the proposed approach is demonstrated by the numerical simulation experiment using a highly nonlinear atmospheric model. Finally, IEPFM is applied to a soil moisture (SM) assimilation experiment, which assimilates in situ observations into the Variable Infiltration Capacity (VIC) model to estimate SM in the MaQu network region of the Tibetan Plateau. Both synthetic and real case experiments demonstrate that IEPFM mitigates particle impoverishment and provides more accurate assimilation results compared with other popular DA algorithms.
Immune Evolution Particle Filter for Soil Moisture Data Assimilation
Data assimilation (DA) has been widely used in land surface models (LSM) to improve model state estimates. Among various DA methods, the particle filter (PF) with Markov chain Monte Carlo (MCMC) has become increasingly popular for estimating the states of the nonlinear and non-Gaussian LSMs. However, the standard PF always suffers from the particle impoverishment problem, characterized by loss of particle diversity. To solve this problem, an immune evolution particle filter with MCMC simulation inspired by the biological immune system, entitled IEPFM, is proposed for DA in this paper. The merit of this approach is in imitating the antibody diversity preservation mechanism to further improve particle diversity, thus increasing the accuracy of estimates. Furthermore, the immune memory function refers to promise particle evolution process towards optimal estimates. Effectiveness of the proposed approach is demonstrated by the numerical simulation experiment using a highly nonlinear atmospheric model. Finally, IEPFM is applied to a soil moisture (SM) assimilation experiment, which assimilates in situ observations into the Variable Infiltration Capacity (VIC) model to estimate SM in the MaQu network region of the Tibetan Plateau. Both synthetic and real case experiments demonstrate that IEPFM mitigates particle impoverishment and provides more accurate assimilation results compared with other popular DA algorithms.
Immune Evolution Particle Filter for Soil Moisture Data Assimilation
Feng Ju (author) / Ru An (author) / Yaxing Sun (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2016
|British Library Online Contents | 2016
|British Library Online Contents | 2016
|British Library Online Contents | 2011
|British Library Online Contents | 2015
|