A platform for research: civil engineering, architecture and urbanism
Drilling Process of GFRP Composites: Modeling and Optimization Using Hybrid ANN
This paper aims to optimize the machining parameters of the drilling process of woven-glass-fiber reinforced epoxy (WGFRE) composites. It will focus on modeling and optimizing drill spindle speed and feed with different laminate thicknesses, with respect to torque and delamination factor. The response surface analysis and artificial neural networks are utilized to model and evaluate the effect of control parameters and their interaction on the drilling process outcomes. The particle swarm optimization algorithm is used to improve the ANN training, to increase its performance in prediction. The optimization method of desirability, based on RSM, is applied to validate the optimal combination of control factors, in the space of the study. The influences of the control parameters on the drilling process outcomes are discussed in detail. The optimal machining parameters were 0.025 mm/r and 1600 rpm for feed and spindle speed, respectively, with a GFRE laminate of 5.4 mm thickness. The RSM and ANN–PSO models applied to predict the drilling-process parameters showed a very high agreement with the experimental data.
Drilling Process of GFRP Composites: Modeling and Optimization Using Hybrid ANN
This paper aims to optimize the machining parameters of the drilling process of woven-glass-fiber reinforced epoxy (WGFRE) composites. It will focus on modeling and optimizing drill spindle speed and feed with different laminate thicknesses, with respect to torque and delamination factor. The response surface analysis and artificial neural networks are utilized to model and evaluate the effect of control parameters and their interaction on the drilling process outcomes. The particle swarm optimization algorithm is used to improve the ANN training, to increase its performance in prediction. The optimization method of desirability, based on RSM, is applied to validate the optimal combination of control factors, in the space of the study. The influences of the control parameters on the drilling process outcomes are discussed in detail. The optimal machining parameters were 0.025 mm/r and 1600 rpm for feed and spindle speed, respectively, with a GFRE laminate of 5.4 mm thickness. The RSM and ANN–PSO models applied to predict the drilling-process parameters showed a very high agreement with the experimental data.
Drilling Process of GFRP Composites: Modeling and Optimization Using Hybrid ANN
Mohamed S. Abd-Elwahed (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Fuzzy Rule Based Modeling of Drilling Parameters for Delamination in Drilling GFRP Composites
British Library Online Contents | 2009
|Soft Computing Applications in Drilling of GFRP Composites: A Review
British Library Online Contents | 2013
|Experimental investigations on high speed drilling of unidirectional GFRP composites
Springer Verlag | 2024
|Influence of drill geometry on thrust force in drilling GFRP composites
British Library Online Contents | 2011
|British Library Online Contents | 2010
|