A platform for research: civil engineering, architecture and urbanism
The Temporal and Spatial Variations in Lake Surface Areas in Xinjiang, China
In arid areas, lakes play important roles in sustaining the local ecology, mitigating flood hazard, and restricting economic activity of society. In this study, we used multi-temporal satellite data to study annual variations in 16 natural lakes with individual surface areas over 10 km2, categorized into six regions based on their geographical and climatic information and on their relations with climate variables. Results indicated that annual variations in lake surface areas are different across these six regions. The surface area of Kanas Lake has not obviously changed due to its typical U-shape cross section; the areas of Ulungur Lake and Jili Lake increased sharply in the 1980s and then slightly decreased; the areas of Sayram Lake, Ebinur Lake, and Bosten Lake increased and then decreased, with peaks detected in the early 2000s; the areas of Barkol Lake and Toale Culler decreased, while those of the lakes located in the Kunlun Mountains steadily increased. Lake areas also show various relationships with climate variables. There is no obvious relationship between area and climate variables in Kanas Lake due to the specific lake morphology; the areas of most lakes showed positive correlations with annual precipitation (except Sayram Lake). A negative correlation between area and temperature were detected in Ulungur Lake, Jili Lake, Barkol Lake, and Toale Culler, while positive correlations were suggested in Bosten Lake and the lakes in the Kunlun Mountains (e.g., Saligil Kollakan Lake, Aksai Chin Lake, and Urukkule Lake).
The Temporal and Spatial Variations in Lake Surface Areas in Xinjiang, China
In arid areas, lakes play important roles in sustaining the local ecology, mitigating flood hazard, and restricting economic activity of society. In this study, we used multi-temporal satellite data to study annual variations in 16 natural lakes with individual surface areas over 10 km2, categorized into six regions based on their geographical and climatic information and on their relations with climate variables. Results indicated that annual variations in lake surface areas are different across these six regions. The surface area of Kanas Lake has not obviously changed due to its typical U-shape cross section; the areas of Ulungur Lake and Jili Lake increased sharply in the 1980s and then slightly decreased; the areas of Sayram Lake, Ebinur Lake, and Bosten Lake increased and then decreased, with peaks detected in the early 2000s; the areas of Barkol Lake and Toale Culler decreased, while those of the lakes located in the Kunlun Mountains steadily increased. Lake areas also show various relationships with climate variables. There is no obvious relationship between area and climate variables in Kanas Lake due to the specific lake morphology; the areas of most lakes showed positive correlations with annual precipitation (except Sayram Lake). A negative correlation between area and temperature were detected in Ulungur Lake, Jili Lake, Barkol Lake, and Toale Culler, while positive correlations were suggested in Bosten Lake and the lakes in the Kunlun Mountains (e.g., Saligil Kollakan Lake, Aksai Chin Lake, and Urukkule Lake).
The Temporal and Spatial Variations in Lake Surface Areas in Xinjiang, China
Yuting Liu (author) / Jing Yang (author) / Yaning Chen (author) / Gonghuan Fang (author) / Weihong Li (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
MODIS-Derived Spatiotemporal Changes of Major Lake Surface Areas in Arid Xinjiang, China, 2000–2014
DOAJ | 2015
|Spatial-Temporal Variations for Pollution Assessment of Heavy Metals in Hengshui Lake of China
DOAJ | 2022
|Analysis of Temporal-Spatial Variation Characteristics of Drought: A Case Study from Xinjiang, China
DOAJ | 2020
|