A platform for research: civil engineering, architecture and urbanism
Wander Effect on Pavement Performance for Application in Connected and Autonomous Vehicles
Connected and Autonomous Vehicles (CAV) will change how road engineers design road pavements because they can position themselves within a traffic lane, keeping their position in the lane more precisely than human-driven vehicles. These vehicles will have lower lateral wandering, which can induce more damage to pavements, such as cracking and permanent deformation, than the conventional vehicles, with consequences for the infrastructures due to the increased cracking and reduced safety due to the rutting. Thus, it is essential to assess the wander effect on pavement performance to define policies for its implementation on CAV. This paper studies the impact of the lateral wander of the traffic on pavement performance, considering its fatigue and permanent deformation resistance. This impact can be used to define limits for the wander to minimize distresses on the pavement. The results of this study allow us to conclude that for a pavement with a 10 cm asphalt layer, the wander effect is more significant for fatigue life. A pavement life increase of 20% was observed for a wander of 0.2 m, while for 0.6 m, the fatigue life can increase up to 48%. For the permanent deformation, a pavement life increase of 2% for a wander of 0.2 m was observed, but for 0.6 m, the pavement life can be increased up to 34%.
Wander Effect on Pavement Performance for Application in Connected and Autonomous Vehicles
Connected and Autonomous Vehicles (CAV) will change how road engineers design road pavements because they can position themselves within a traffic lane, keeping their position in the lane more precisely than human-driven vehicles. These vehicles will have lower lateral wandering, which can induce more damage to pavements, such as cracking and permanent deformation, than the conventional vehicles, with consequences for the infrastructures due to the increased cracking and reduced safety due to the rutting. Thus, it is essential to assess the wander effect on pavement performance to define policies for its implementation on CAV. This paper studies the impact of the lateral wander of the traffic on pavement performance, considering its fatigue and permanent deformation resistance. This impact can be used to define limits for the wander to minimize distresses on the pavement. The results of this study allow us to conclude that for a pavement with a 10 cm asphalt layer, the wander effect is more significant for fatigue life. A pavement life increase of 20% was observed for a wander of 0.2 m, while for 0.6 m, the fatigue life can increase up to 48%. For the permanent deformation, a pavement life increase of 2% for a wander of 0.2 m was observed, but for 0.6 m, the pavement life can be increased up to 34%.
Wander Effect on Pavement Performance for Application in Connected and Autonomous Vehicles
Jorge Pais (author) / Paulo Pereira (author) / Liseane Thives (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Wander 2D: a flexible pavement design framework for autonomous and connected trucks
Taylor & Francis Verlag | 2022
|Pavement Sustainability Implications of Different Lateral Wander Modes for Autonomous Trucks
DOAJ | 2023
|Investigation of impact of wheel wander on pavement performance
Taylor & Francis Verlag | 2017
|Taylor & Francis Verlag | 2023
|