A platform for research: civil engineering, architecture and urbanism
Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel
The increasing trend towards decarbonization requires the reduction of the environmental impact of the building sector that currently accounts for approximately 40% of the total CO2 emissions of European countries. Even though Luminescent Solar Concentrator (LSC) panels could be a very promising technology to be installed in urban environments, there is still little implementation of LSC panels in building façades. Here, the realization of a Ventilated Façade (VF) integrating an LSC device as an external pane is presented and a preliminary numerical and experimental investigation is used to evaluate the interaction between the different structure components. Thanks to the realization of a dedicated mock-up finite element method, models are calibrated and validated against experimental measurements, showing a good correspondence between simulated and measured data. Moreover, the electrical characterization of the LSC panel confirms that large area devices can be used as an external skin of VF, reporting a photovoltaic efficiency of 0.5%. The system’s thermal and optical properties (estimated thanks to the software COMSOL Multiphysics) encourage the continuation of the research by considering different technologies for the VF internal skin, by scaling up the case study, and by running the simulation of an entire building considering winter and summer energy demands.
Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel
The increasing trend towards decarbonization requires the reduction of the environmental impact of the building sector that currently accounts for approximately 40% of the total CO2 emissions of European countries. Even though Luminescent Solar Concentrator (LSC) panels could be a very promising technology to be installed in urban environments, there is still little implementation of LSC panels in building façades. Here, the realization of a Ventilated Façade (VF) integrating an LSC device as an external pane is presented and a preliminary numerical and experimental investigation is used to evaluate the interaction between the different structure components. Thanks to the realization of a dedicated mock-up finite element method, models are calibrated and validated against experimental measurements, showing a good correspondence between simulated and measured data. Moreover, the electrical characterization of the LSC panel confirms that large area devices can be used as an external skin of VF, reporting a photovoltaic efficiency of 0.5%. The system’s thermal and optical properties (estimated thanks to the software COMSOL Multiphysics) encourage the continuation of the research by considering different technologies for the VF internal skin, by scaling up the case study, and by running the simulation of an entire building considering winter and summer energy demands.
Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel
Giulio Mangherini (author) / Paolo Bernardoni (author) / Eleonora Baccega (author) / Alfredo Andreoli (author) / Valentina Diolaiti (author) / Donato Vincenzi (author)
2023
Article (Journal)
Electronic Resource
Unknown
building integrated photovoltaic , ventilated façade , luminescent solar concentrator , numerical modeling , semi-transparent photovoltaic panel , thermal simulation , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0