A platform for research: civil engineering, architecture and urbanism
Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency
Rice is one of the most important food crops in China and is also the largest user of agricultural water. Experiments were conducted for two consecutive years at two locations of Jiangsu province to study the effect of four irrigation methods with four replications (shallow water irrigation (FSI), wet-shallow irrigation (WSI), controlled irrigation (CI), and rain-catching and controlled irrigation (RCCI)) on drainage, rainwater utilization rate, pollutant load of N and P, irrigation water, grain yield, and water use efficiency. The results show that FSI treatment used the largest irrigation amount, which is significantly higher than the other three irrigation methods, but the southern part of Jiangsu province especially Nanjing and riverside areas are relatively rich in water resources. It can be seen from our findings that FSI and RCCI are the best irrigation methods in Nanjing area to get a higher yield. However, the yield of CI treatment varies greatly; the annual and seasonal yield changes of CI treatment are higher than those of other treatments; and the risk of yield reduction is greater. Thus, considering water saving and high efficiency, RCCI is a better irrigation strategy than FSI. Combined with the following analysis, it can be seen that RCCI irrigation treatment has less nitrogen and phosphorus pollution load with no significant difference in yield in Lianshui and in 2017 in Nanjing area. Therefore, RCCI is more suitable for irrigation in Lianshui and similar areas.
Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency
Rice is one of the most important food crops in China and is also the largest user of agricultural water. Experiments were conducted for two consecutive years at two locations of Jiangsu province to study the effect of four irrigation methods with four replications (shallow water irrigation (FSI), wet-shallow irrigation (WSI), controlled irrigation (CI), and rain-catching and controlled irrigation (RCCI)) on drainage, rainwater utilization rate, pollutant load of N and P, irrigation water, grain yield, and water use efficiency. The results show that FSI treatment used the largest irrigation amount, which is significantly higher than the other three irrigation methods, but the southern part of Jiangsu province especially Nanjing and riverside areas are relatively rich in water resources. It can be seen from our findings that FSI and RCCI are the best irrigation methods in Nanjing area to get a higher yield. However, the yield of CI treatment varies greatly; the annual and seasonal yield changes of CI treatment are higher than those of other treatments; and the risk of yield reduction is greater. Thus, considering water saving and high efficiency, RCCI is a better irrigation strategy than FSI. Combined with the following analysis, it can be seen that RCCI irrigation treatment has less nitrogen and phosphorus pollution load with no significant difference in yield in Lianshui and in 2017 in Nanjing area. Therefore, RCCI is more suitable for irrigation in Lianshui and similar areas.
Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency
Shuxuan Zhang (author) / Ghulam Rasool (author) / Xiangping Guo (author) / Liang Sen (author) / Kewen Cao (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Annual Irrigation Water Use for Arkansas Rice Production
British Library Online Contents | 2016
|Eco-Environmental Constraints to Rice Irrigation
British Library Conference Proceedings | 1998
|Irrigation Systems, Water Use Efficiency and Environmental Impacts
British Library Conference Proceedings | 1996
|Effects of irrigation methods and system management on water application efficiency
Engineering Index Backfile | 1963
|