A platform for research: civil engineering, architecture and urbanism
Centrifuge modelling of a soil nail retaining wall
This paper describes a physical model of a soil nail retained excavation face which was tested in the new geotechnical centrifuge at the University of Pretoria. As centrifuge modelling is new in South Africa, a short introduction to this technique is presented. The mobilisation of soil nail forces and their maximum values in response to excavation in the model were compared to measurements recently made in an instrumented 10 m high soil nail retaining structure for the Gautrain system in Pretoria. Results were also compared to predictions made using a simple failure wedge analysis and a database of eleven full-scale instrumented soil nail walls from the literature. The centrifuge model data compared well with both full-scale situations and theoretical analyses. The results suggest that soil nail forces measured in the centrifuge are conservative due to the mobilisation of a portion of the shear strength of the model soil during the acceleration of the centrifuge, leaving less un-mobilised shear strength available to resist loads resulting from the excavation.
Centrifuge modelling of a soil nail retaining wall
This paper describes a physical model of a soil nail retained excavation face which was tested in the new geotechnical centrifuge at the University of Pretoria. As centrifuge modelling is new in South Africa, a short introduction to this technique is presented. The mobilisation of soil nail forces and their maximum values in response to excavation in the model were compared to measurements recently made in an instrumented 10 m high soil nail retaining structure for the Gautrain system in Pretoria. Results were also compared to predictions made using a simple failure wedge analysis and a database of eleven full-scale instrumented soil nail walls from the literature. The centrifuge model data compared well with both full-scale situations and theoretical analyses. The results suggest that soil nail forces measured in the centrifuge are conservative due to the mobilisation of a portion of the shear strength of the model soil during the acceleration of the centrifuge, leaving less un-mobilised shear strength available to resist loads resulting from the excavation.
Centrifuge modelling of a soil nail retaining wall
S W Jacobsz (author)
2013
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Simulation of soil nail reinforcements in centrifuge
British Library Conference Proceedings | 2002
|Investigation of retaining wall installation and performance using centrifuge modelling techniques
Online Contents | 1998
|European Patent Office | 2020
|Numerical Analysis of Soil Nail Walls in Hybrid Retaining Wall Systems
British Library Conference Proceedings | 2020
|